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Abstract: 

Excessive generalisation of threat to similar stimuli is 
characteristic in anxiety. Such generalisation can arise 
from a failure to correctly identify the threatening 
stimulus or from the transfer of learned values to similar 
stimuli. Here we use computational modelling to 
characterise how perceptual and value-based 
mechanisms shape generalisation functions and how 
they relate to anxiety.  
Participants (n=140) learned probabilistic stimulus-
outcome associations that were then tested for 
generalisation on morphs of the original stimulus. Within 
each participant, we varied stimulus discriminability 
(high/low; perceptual manipulation) and the rate of 
reinforcement (25/50/75%; value manipulation). We found 
that participants generalized threat expectancy to new 
stimuli. Interestingly, participants generalized either by 
extrapolating linearly (linear function) or by using a 
similarity-based strategy (gaussian function). Both 
perceptual uncertainty and reinforcement rate impacted 
generalisation. Value generalisation was mediated by the 
generalisation strategy while perceptual uncertainty 
increased generalisation independently of it. Anxiety was 
associated with stronger generalisation for stimuli 
further from the original stimulus, especially when 
reinforcement rate was high.  
This study characterises different mechanisms of 
aversive generalisation and contributes to our 
understanding of excessive generalisation in anxiety.  
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Mechanisms of Fear Generalisation 
Generalisation of aversive associations to visually 
similar cues is adaptive for the detection and prevention 
of potential harm. However, excessive generalisation to 
safe stimuli increases the amount of perceived threat in 
one’s environment and has been associated with 
anxiety disorders (Cooper et al., 2022). 

Previous work has highlighted two possible 
mechanisms when generalizing along a dimension of 
perceptual similarity. Generalisation can result from the 

inability to discriminate a new stimulus from the 
threatening one or from the active transfer of learned 
values to similar stimuli (Norbury & Seymour, 2018; Yu 
et al., 2023). Recent work has further shown that people 
use different strategies to generalize value, 
generalizing either based on stimulus similarity (which 
results in a Gaussian-like function) or by extrapolating 
their expectations linearly (linear function; Wong & 
Lovibond, 2017). 

To date, we don’t know if anxiety affects perceptual 
or value-based processes and whether anxiety affects 
the generalisation strategy. Here we aim to characterise 
individual contributions of perceptual and value-based 
processes to generalisation and relate them to 
subclinical variations in anxiety.  

Experimental Design 
Participants first learned to probabilistically associate a 
flower-like shape (conditioned stimulus, CS+) with an 
aversive scream (learning phase). Next, expectancy 
ratings (0-100%) for the CS+ and for 8 shapes varying 
in similarity to the CS+ were collected as a measure of 
generalisation (generalisation phase). We varied 
reinforcement rate during learning (25/50/75%; value 
manipulation) and discriminability of neighbouring 
shapes during generalisation (80/60%; perceptual 
manipulation; Fig.1). Participants completed the 
STICSA questionnaire (Ree et al., 2008) as a measure 
of trait anxiety. 

Figure 1: Example stimulus set. 
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Behavioural Results 
Expectancy ratings after learning show that participants 
learned outcome probabilities for different conditions 
(Fig. 2a). Participants generalized threat expectancy 
along the continuum of perceptually similar shapes 
following a linear (n=61) or gaussian (n=64) strategy 
(Fig. 2b, n=15 no clear strategy).   

We analysed ratings as a function of distance from 
the CS+. To jointly look at gaussian and linear gradients 
we transformed linear ratings for stimuli on the left of 
the CS+ by subtracting them from the mean CS+ of the 
respective reinforcement rate condition. A GLM 
revealed that ratings decreased with increasing 
distance from the CS+. This decrease was stronger in 
low uncertainty compared to high uncertainty conditions 
(Fig. 2c) which indicates a tendency for wider 
generalisation when discriminability is low. The effect of 
perceptual uncertainty was stronger in linear compared 
to gaussian gradients (gaussian low-high - linear low-
high: 0.08, CI95=[0.04, 0.11]). Higher reinforcement 
rate was associated with higher ratings for the CS+ and 
with steeper slopes in gaussian but not in linear 
gradients (Fig. 2d; gaussian 50-75%: 0.11 CI95= [0.09, 
0.15], 25-50%: 0.13 CI95= [0.1,0.16]). This indicates 
that higher outcome probability shifted the peak of 
gaussian gradients and the overall gradient in linear 
generalizers.  

We found no anxiety related learning differences after 
threat conditioning. Anxiety was however associated 
with stronger generalisation across strategies, 
especially for high reinforcement rates (75-50%: 0.05 
CI95=[0.03,0.08], 75-25%: 0.03 CI95=[0.001, 0.06]).  

Modelling Framework 
We model value generalisation strength 𝜆 across 
strategies while accounting for perceptual confusability 

𝜌. In our model, the value for the CS+ (𝑉!"#) generalizes 
to neighbouring stimuli following a generalisation 
function 𝐺$: 𝑉!"# ∗ 𝐺$, where 𝐺$ governs the shape of 
generalisation and takes a sigmoid or gaussian shape 
depending on the strategy parameter Ω. If Ω = 1: 
𝐺%&'(( = 2/(1 + 𝑒

!"#$
% ), if Ω = 0: 𝐺)*+,&-	 = 2/(1 + 𝑒

!&'
% ), 

where 𝑑&/( and 𝑑,' indicate absolute or Euclidean 
distance from the CS+. In both cases 𝜆 determines 
generalisation width (Fig 2e). 

To model perceptual uncertainty on each trial t, the 
current stimulus 𝑆!,1 can be mistaken for a neighbouring 
stimulus 𝑆2,-3,1 with probability 𝑃. 𝑃	for 𝑆!,1 depends on 
the perceptual uncertainty level 𝜌: 𝑃(𝑠!,1) = 1 − 𝜌 and 
for all other stimuli on 𝜌 and distance from the shown 
stimulus 𝑃(𝑠4) = 	𝜌4"#$. The expectancy rating 𝑦1 on 
each trial results from the value of 𝑆2,-3,1. 

We performed parameter and model recovery for a 
set of full and lesioned models. We found that the model 
accounting for value generalisation only fit our data 
best, even in participants with gaussian generalisation 
gradients. Further analyses will focus on relating 
modelling results to anxiety.  

Conclusion 
Our data provides evidence for threat generalisation 
along a dimension of perceptual similarity. We show 
that perceptual uncertainty increases generalisation to 
similar stimuli and that value impacts generalisation 
differently depending on the latent structure that 
participants infer. We find that trait anxiety is associated 
with stronger generalisation and that this relates to 
value processing rather than perceptual mechanisms. 

Our results contribute to a mechanistic understanding 
of aversive generalisation and attempt to model 
generalisation across strategies to provide a unifying 
measure for generalisation tendency. 

Figure 2: Expectancy ratings a) for CS+ after learning b) during generalisation for all shapes, grouped by participant 
and strategy c) slopes for perceptual uncertainty conditions by strategy d) distance-based generalisation gradients 
grouped by reinforcement rate and strategy e) example generalisation functions G for varying parameter 𝜆.  
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