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Abstract: 
Neurons often fire in synchrony, generating rhythms that support 
cognition and signal distinct brain states. These rhythms have been 
widely studied with EEG, but EEG’s low spatial resolution limits 
our ability to investigate the brainwide activity that underlies neural 
rhythms. fMRI can measure brainwide activity through 
hemodynamic signals, but identifying relationships between 
hemodynamics and electrophysiology is analytically challenging, 
particularly when trial averaging is not possible—such as in studies 
of spontaneous, naturally varying brain states. We developed a 
machine learning approach that predicts neural rhythms (EEG 
power in canonical frequency bands) from fast fMRI (<400 ms TR). 
Using two datasets of participants (n=21) drifting in and out of 
sleep, we show that neural rhythms can be predicted from brainwide 
fMRI dynamics in out-of-sample subjects, and that different 
patterns of fMRI regions predict alpha (8-12Hz) and delta (1-4Hz) 
EEG power. Alpha was primarily predicted by arousal-controlling 
subcortex and V1, while delta predictions relied on a large number 
of primarily cortical regions, with significant contributions from the 
putamen and non-gray matter components. Our results reveal the 
brainwide activity underlying key neural rhythms involved in 
cognition and arousal, and enables discovery of the large-scale 
dynamics linked to neural rhythms, with applications to diverse 
neuroscience questions. 
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Introduction 
Neural rhythms play a key role in arousal and cognition, and 
the presence of different rhythms defines distinct brain states, 
such as the different stages of sleep. However, the brainwide 
activity that underlies the appearance of specific EEG 
oscillations is not well understood. Acquiring simultaneous 
fMRI with EEG enables measurement of the brainwide 
activity across all cortical and subcortical regions, but 
analyzing these data is challenging due to the complex 
relationship between hemodynamics and electrophysiology. 
Traditional analytical approaches convolve the EEG signal 
with a hemodynamic response function (HRF), but static 
HRFs miss many true relationships, because the 
hemodynamic response varies substantially across the brain 
(Handwerker et al., 2004). Furthermore, traditional HRF 
fitting methods do not involve cross-validation and can thus 
overfit the data, leading to non-replicable results. 

We introduce a novel approach to EEG-fMRI analysis that 
uses machine learning to model the relationship between the 
two modalities. We use this method to discover the brainwide 
fMRI patterns underlying two canonical neural rhythms: 
alpha (8-12Hz), associated with diverse cognitive processes 
and stronger during eyes-closed wakeful rest (Clayton et al., 
2018), and delta (1-4Hz), associated with memory 
consolidation and brain waste clearance, and strongest during 
non-REM sleep (Fultz et al., 2019; Huber et al., 2004). 

Results 
We trained two sets of machine learning models to separately 
predict occipital EEG power in the alpha (8-12Hz) and delta 
(1-4Hz) bands from simultaneous accelerated fMRI (3T, 
2.5mm isotropic voxels, TR=378ms in dataset 1; TR=367ms 

in dataset 2) using data from 21 subjects naturally drifting in 
and out of sleep (Fig 1A). EEG power was calculated in 5s 
windows, then interpolated to match fMRI timing. The fMRI 
data was parcellated into 84 regions (Desikan et al., 2006), 
and the mean timeseries was extracted from each region. 
Model predictors were sliding windows of 60 TRs (~22s) 
from the 84 parcellated fMRI regions, trained to predict the 
EEG point at the center of the window. EEG and fMRI data 
were normalized separately within each subject. Models were 
iteratively trained on all subjects but one, and performance 
(correlation between predictions and truth) were calculated 
on the held-out subject. All correlation values reported here 
are from held-out subject data. We used two model types: a 
linear model trained with stochastic gradient descent and L2 
regularization (Jacob et al., 2024) and a neural network with 
temporal convolutions (Fig 1B) based on Syeda et al. (2023). 

Models were first trained under 5 input conditions: all 
parcellated fMRI regions (‘all’), all regions but with a 2000 
TR circular shift of the fMRI data to break the true 
relationship with EEG (‘control’), only the ‘cortical’ regions, 
only the ‘subcortical’ regions, and only the non-gray matter 
regions (‘non-GM’) (Fig 1C, 1F). We found that distinct 
fMRI regions carried distinct information about each EEG 
band: alpha power was most strongly predicted by subcortical 
regions, while delta predictions benefited most from cortical 
regions. Delta could also be significantly predicted by non-
gray matter regions, while alpha could not, likely owing to 
the known coupling between delta power and cerebrospinal 
fluid flow (Fultz et al., 2019). These patterns were consistent 
across the two model types. Representative predictions 
demonstrate that models captured both short- and long-
timescale fluctuations (Fig 1D, 1G). The neural network did 
not generalize to held-out subjects significantly better than 
the linear model, implying the relationship between fMRI and 
alpha/delta EEG power may be less complex than expected. 
Future work with additional neural network architectures is 
needed to assess the complexity of this relationship. 

To identify finer-scale information, we trained the linear 
model to predict EEG power from each bilateral parcellated 
fMRI region, and found that alpha could be significantly 
predicted by each region of the arousal-controlling subcortex 
(thalamus, the dorsal striatum separately as caudate and 
putamen, and pallidum), along with the cuneus (primary 
visual cortex) (Fig 1E). For delta predictions, the non-gray 
matter regions were included along with each bilateral gray 
matter region, as they demonstrated significant delta-
predictive performance on their own (Fig 1F); this allowed us 
to correct for the non-neuronal fMRI components predictive 
of delta and identify uniquely neural information. We found 
that the only region that could significantly improve delta 
predictions over the non-gray matter regions on their own 
was the putamen (Fig 1H). Given that delta predictions had 
demonstrated superior performance when using data from all 
parcellated regions and from the entire cortex (Fig 1F), it is 



likely that delta is diffusely represented across the brain, 
relying on widespread information that primarily spans the 
cortex with contributions from the putamen and 
cerebrospinal fluid flow. This broad cortical involvement 
may reflect the role of slow rhythms (~1-2Hz) in information 
transfer and memory consolidation during sleep (Helfrich et 
al., 2019). Similarly, the putamen is implicated in memory 
consolidation processes (Ribeiro et al., 2004). On the other 
hand, alpha was significantly predicted by several individual 

regions, suggesting that a more focal set of regions carry 
redundant information about the dynamics of alpha rhythms. 

Our results reveal the brainwide dynamics underlying 
canonical neural rhythms and the brain states they represent, 
and establish the analytical groundwork for future 
investigations. This approach could, for instance, help 
determine how brainwide activity underlying neural rhythms 
might change as a function of aging, disease, or different 
cognitive processes.  

Fig 1: EEG power in the alpha and delta bands were predicted from simultaneous fMRI as subjects drifted in and out of sleep. A. 
Models were trained on sliding sequences of 60 fMRI TRs to predict each EEG point (interpolated to match fMRI TRs). B. Neural 
network structure. C. Correlation between predictions on held-out subjects and ground truth when models were trained under 5 
input conditions (see ‘Results’ text for condition details). Gray lines represent subjects; colored circles show mean. Error bars are 
SEM. * p<0.05; ** p<0.01; *** p<0.001; Tukey’s HSD. D. Example alpha predictions from ‘subcortical’ condition on a held-out 
subject. E. Performance when linear models were trained on individual bilateral regions to predict alpha. Text labels point out 
regions that were significantly better than control when training on single regions. F. Same as C, but for delta. G. Example delta 
predictions from ‘all’ condition on a held-out subject. H. Performance when linear models were trained on bilateral regions 
combined with non-gray matter regions (to correct for physiological components) to predict delta. Text label points out the region 
that was significantly better than non-gray matter regions alone. 
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