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Abstract

Attention can be deployed voluntarily, “top-down”, based
on task goals, or captured automatically, “bottom-up”,
by salient stimuli. Most previous studies have controlled
stimulus salience by altering low-level target features, for
example, by increasing luminance, or inducing popouts,
or by creating motion dynamics. Can we design static,
naturalistic images that capture bottom-up attention ro-
bustly? We address this question in three stages. First,
we hypothesize that such tailor-made “super-stimuli”
would evoke strong responses in visual cortical areas.
We advance a deep generative framework with a heuris-
tic optimization algorithm (XDream) to design category-
specific, naturalistic images that can combinatorially ac-
tivate and suppress multiple regions across human vi-
sual cortex. Second, with human functional MRI record-
ings, we show that such super-stimuli differentially acti-
vate visual cortical regions targeted by the optimization
algorithm, thereby validating the approach. Third, we
show that, in a working memory task, super-stimuli op-
timized for specific regions are more accurately recalled
than control stimuli, thereby demonstrating their behav-
ioral salience. Our behaviorally validated super-stimuli
open up new avenues of research for investigating neural
mechanisms of exogenous attention control with salient,
naturalistic images.

Keywords: fMRI, attention, visual, deep networks, super stim-
uli, saliency, working memory

Introduction

Attention can be engaged in multiple forms — goal-directed
(top-down or endogenous) and stimulus-driven (bottom-up or
exogenous). While task protocols for engaging endogenous
attention have been extensively studied (Corbetta & Shulman,
2002), comparatively little is known about the nature of salient
stimuli that engage exogenous attention (liti & Koch, 2000).
Recent work suggests that exogenous attention is directly
mediated by activity in visual cortex (Fernandez & Carrasco,
2020). Here, we hypothesize that stimuli that evoke strong re-
sponses in visual cortical regions would also naturally engage
exogenous attention.

The human visual system processes information hierarchi-
cally, with higher brain areas progressively encoding more
complex features (Hubel & Wiesel, 1959; Kanwisher, McDer-
mott, & Chun, 1997; Pasupathy & Connor, 1999). Yet, which
combinations of natural image features drive the strongest re-
sponse in each visual area remains unknown. The high di-
mensionality of natural images renders this optimization pro-
hibitively challenging at the pixel level. Furthermore, the large
number of potential feature combinations in natural images
renders trial-and-error approaches infeasible.

To address this challenge, recent studies have employed
deep learning models, particularly deep generative networks
(DGNs), to generate images that activate specific brain re-
gions (Bashivan, Kar, & DiCarlo, 2019; Gu et al., 2022; Ponce

et al., 2019; Walker et al,, 2019). Specifically, we lever-
age XDream (Ponce et al.,, 2019; Xiao & Kreiman, 2020)
— a recent framework that employs a deep generative net-
work (DGN) (Brock, Donahue, & Simonyan, 2018) in combina-
tion with a heuristic optimization (genetic) algorithm. We ad-
vance the XDream algorithm to design salient “super-stimuli”
— high-resolution, naturalistic images tailor-made to evoke
the strongest responses in specific brain areas — and evaluate
these as candidate images for engaging exogenous attention.

Our study makes the following key contributions: (a) We ad-
vance XDream on two fronts: (i) by generating super-stimuli
constrained by specific object categories and (ii) by designing
“chimeric” super-stimuli that can combinatorially activate or
suppress multiple brain regions at once. (b) We show that syn-
thesized super-stimuli activate the specific region targeted by
the optimization algorithm, by directly recording participants’
visual cortical responses with functional MRI. (c) We validate
the behavioral salience of these super-stimuli by showing that
they are more accurately recalled than control stimuli in a 2-
back working memory (WM) task.

Methods

Dataset and Encoder We utilized the Algonauts Challenge
subset (Gifford et al., 2023) of the Natural Scenes Dataset
(NSD) (Allen et al., 2022), which includes beta maps of multi-
ple visual cortex region activations measured with fMRI. Each
of the 8 participants was shown 10,000 images in a 7T MRI
scanner. We selected data from two participants, #2 and #5
out of the four who completed all the trials. A key compo-
nent of our image generation algorithm is an fMRI-“Encoder”:
a neural network trained with natural images, and their corre-
sponding fMRI activations to predict fMRI activations to novel
images. Here, we trained a separate encoder (Gaziv et al.,
2022) for each region and participant using the dataset.

Generating super-stimuli Our model comprises two major
components (Fig 1A). The first component, an unconstrained
optimizer based on the XDream framework (purple shading),
itself comprised of 3 modules: i) a deep generative network
(BigGAN-deep (Brock et al., 2018)) that synthesizes images
based on vector “image codes”, ii) an Encoder (Gaziv et al.,
2022) that predicts regional fMRI brain responses to the syn-
thesized images, and iii) a “genetic” optimization algorithm
(GA) that iteratively refines image codes to enhance fMRI
activity over generations stochastically. The second compo-
nent comprises a “constrained optimizer” (yellow shading) that
seeks to enhance category-relevant features in the generated
images.

The constrained optimizer utilizes the output probabilities
from the classifier (Tu et al., 2022). A minimum threshold of
0.8 is applied to the classifier scores of the images belonging
to their respective classes. If an image’s class score falls be-
low this threshold, the corresponding codes are updated using
the classifier loss backpropagated through the DGN. This pro-
cess modifies the images to increase region-specific activity
and maintain their class membership simultaneously. Control
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Figure 1: Generating naturalistic “super-stimuli”. A) The proposed model (see text). (B) and (C) Images generated with the unconstrained
model and constrained optimizer respectively. Rows: Categories; Columns: Visual regions. V1, V4: primary and object-selective visual areas;
FFA- fusiform face area; PPA- parahippocampal place area. (F-G) Predicted fMRI activity (cyan) and class score (orange) as a function of
generations for V1 (left) PPA (right) in the unconstrained (F) & constrained (G) models. (D-E) Chimeric images generated by jointly optimizing

two regions. Conventions: +: enhanced, -: suppressed.

stimuli were generated using the same initial seeds but by ran-
domly shuffling the image scores obtained from the encoder
in each generation of the genetic algorithm. To modify im-
ages jointly for two regions, we combined image scores from
two separate encoders, one for each region of interest, with a
weighted softmax function.

Behavioral and fMRI evaluation To assess the behavioral
salience of these super-stimuli, we tested participants (n=10)
on a 2-back working memory task (Kirchner, 1958) (Fig.
2B). Participants pressed a button when the current image
matched the image presented two frames earlier and withheld
responses otherwise. We selected images (both super-stimuli
and controls) optimized for V1v and hV4 regions based on pre-
vious research, which suggests the involvement of these re-
gions in exogenous attention (Burrows & Moore, 2009; Chen,
Zhang, Wang, Zhou, & Fang, 2016). These same images
were presented to participants in a functional MRI scanner
(Siemens Prisma) to identify visual cortical regions they acti-
vate.

Results

Stimuli Combinatorially Optimized for Visual Cortex Im-
ages optimized for specific brain regions contained features
consistent with prior knowledge about these regions. Viv
and hV4 optimized images contained textures or primitive ob-
jects, respectively (Fig.1B, 1st, 2nd columns). By contrast,
FFA and PPA optimized images contained face-like or scene-
based features, respectively (Fig.1B, 3rd, 4th columns). Yet,
with the unconstrained model, category-specific information
(class score) reduced steeply over generations (Fig. 1F, or-
ange).

Addition of the constrained optimizer yielded images that
clearly carried more category-specific features (Fig. 1C). For
example, conditional generation with the “telephone” class op-
timized for FFA yielded the image of a person’s face superim-
posed over a rotary phone dial (Fig. 1C). Moreover, class
scores remained high over generations (Fig 1G, orange).

Optimizing for two brain regions jointly yielded “chimeric”
stimuli (Fig. 1D & E). Notably, suppressing the activity of

one region while enhancing the other diminished the features
associated with former. For example, enhancing FFA while
suppressing PPA produced “face” features but blurred out the
background, rendering “place” features challenging to identify
(Fig. 1D, FFA+/PPA-).
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Figure 2: (A) Thresholded z-map of fMRI activity (n=5 participants,
z>2.5) showing regions activated more by V1v than hV4 optimized
images (left) and vice versa (right). (B) A 2-back task design (see
text). (C) Accuracy in the 2-back task for V1v-optimized (left) and
hV4-optimized (right) super-stimuli (green) and control stimuli (pur-
ple). (D) Average pixel intensities of the super-stimuli and control
stimuli.
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Super-stimuli Activate Visual Cortex Selectively Five
participants underwent fMRI scans while viewing images opti-
mized for the V1v and hV4 regions. Thresholded brain activity
maps (Fig. 2A, p<0.01, FPR) revealed greater activation near
the primary visual cortex (medial cuneus and lingual gyrus)
for V1v-optimized stimuli. Conversely, hV4-optimized stimuli
elicited stronger activations in ventrolateral visual cortex con-
sistent with the locus of the LOC (lateral occipital cortex).

Super-stimuli are Behaviorally Salient 2-back recall accu-
racies were higher for the hV4-optimized super-stimuli than
control stimuli (p=0.003; permutation test, Fig. 2C, right) indi-
cating higher salience; a similar difference was not evident for
V1v-optimized stimuli (p=0.791, Fig. 2C, left). Average pixel
intensities did not differ between the super-stimuli (Fig. 2D,
green) and control stimuli (Fig. 2D, purple) (p = 0.11, Wilcoxon
test), indicating that the results could not be attributed to over-
all intensity differences between the image groups.
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