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Abstract
Computational modeling tools provide a precise platform to
investigate theories and hypotheses in neuroscience. How-
ever, current neuronal circuit models fail to achieve realistic
neural dynamics without non-physiological assumptions. One
class of models can be trained to generate those dynam-
ics with high computational performance but are biophysically
unrealistic (e.g artificial neural networks). Another class of
models are designed to be biophysically realistic yet most of
these models heavily rely on manual tuning. In this study, we
have implemented a self-supervised learning algorithm called
generalized Stochastic Delta Rule (gSDR). With this rule, we
have trained biophysical neural circuits to achieve specific re-
sponses, such as resting membrane potential, firing rate and
oscillatory dynamics. These models can also be trained to
reproduce observed neurophysiological data (e.g task modu-
lated oscillatory dynamics). We test this by training the model
to reproduce a visually evoked oscillation shift from alpha-
beta (∼ 10-30Hz) to gamma (∼ 40-90Hz) based on high-
density electrophysiological recordings. These gamma-beta
interactions emerged by self-modulation of synaptic weights
via gSDR. We demonstrated that this approach can be used
to understand both neuronal circuit mechanisms as well as the
computations they perform.
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Introduction
Computer-based simulation (In-silico) enhance our testing
capabilities by reducing majority of experimental limitations
existing in-vivo/vitro. Many studies leverage in-silico mod-
els to explore and test hypotheses rooted in neural dy-
namics observed in electrophysiology (Bastos et al., 2015),
cell types(Lichtenfeld et al., 2024), excitatory-inhibitory (E-
I) interactions and neurochemicals (e.g neurotransmitters In-
vivo/vitro)(Ardid et al., 2019). Also, brain inspired computa-
tional modeling such as the artificial neural networks (ANNs)
revolutionized artificial intelligence (AI) and deep learning(Niu,
Zhong, & Yu, 2021).

Unlike most of the computational models in deep learning
and AI, biological neural circuits rely on biophysics. By these
biophysical interactions neural circuits are able to change the
state of them at any scale, large or small neural ensem-
bles, single neurons and even at the receptors and synapses.
Eventually, different neuronal cell types with specific neuro-
modulators inhibit or stimulate other neurons, adding biophys-
ical interactions resulting in spectro-temporal dynamics. In ad-
dition, since our goal is to test theoretical hypotheses about

the brain in single neuron, microcircuit and/or neuronal popu-
lation scales, we cannot rely on the models not aiming to be
as consistent as possible with neurobiology. Regrading this
issue, many of the recent studies have focused on biophysical
details of neural microcircuits (J. Sherfey, Ardid, Miller, Has-
selmo, & Kopell, 2020), (Wacongne, Changeux, & Dehaene,
2012). However, most of these models require manual tuning
and optimization prior to the simulation due to non-linearity,
complexity and biophysical constraints. Thus we proposed a
learning algorithm for brain-like models with biophysical com-
plexities. The goal of this learning algorithm is to gain insight
into how the brain switches between oscillatory motifs (e.g,
from beta to gamma).

Methods
Since our goal is to work with biophysically detailed neu-
ronal models, we added our methods as a toolset called ”Dy-
nalearn” on Dynasim toolbox on Matlab (J. S. Sherfey et al.,
2018). In this toolbox, network models represents a cortical
population with distinct cell types modeled by corresponding
Hodgkin-Huxley Hodgkin and Huxley (1952) circuit parame-
ters. In addition, some other mechanisms (e.g, receptors &
ion channels) have been added to Hodgkin-Huxley equation
model based on the other studies. General form of these neu-
rons is shown in the equation (1):

Cm
dV
dT

=−Iinp(t,V )+−∑ Iint −∑ Isyn (1)

Where t is time (ms), Cm is the membrane capaci-
tance, Iint denotes the intrinsic membrane currents (such as
INa, IK , ILeak), Iinp(t,V ) is the current reflecting inputs from ex-
ternal sources and Isyn denotes synaptic currents from the
other neurons driving this neuron. Using this framework, we
are able to define detailed neuronal models with multiple pop-
ulations of similar or different cell types and various synaptic
connection mechanisms (such as IAMPA, IGABA, INMDA, ...) be-
tween them.

There are various optimization or learning methods in Dy-
nalearn but here we focus on the generalized Stochastic
Delta-Rule (gSDR) which is inspired from the stochastic delta
rule (N & SJ, 2020) and spike-timing dependant plasticity
(Markram, Gerstner, & Sjöström, 2012). The general form of
our algorithm is shown in equation (2):

Vt =Vt−∆t +(δ(λ)L+α).R (2)

Where Vt is all variables at time t that model can change,
δ(λ) ∼ uni f orm(−λ,λ) (λ : exploration factor) is a random



sample from a uniform distribution, L is the output of eval-
uation function (∑(metric − target)2) at that time, α is the
unsupervised factor (if α = 0, model will no longer have un-
supervised changes) and R is the mutual-correlation depen-
dant plasticity (MCDP) function output around the step time
(t −∆t, t) based on Xt,(N×t) which is a matrix containing the
membrane potential of all (N) neurons. This function acts as
an approximation of spike-timing dependant plasticity (STDP)
depending on the time length ∆t. Details are in this equation
(3):

R = MCDP(Vt ,∆t) =
r−µ

σr
, rN×N =Corr(Xt) (3)

Consider that there are two component in gSDR; one is the
part that the value of loss or reward affects how the model will
change its parameters (self-supervised) and the MCDP part
that is completely unsupervised. In addition, value of R will
be 1 for any variables in Vt that is not a synaptic weight, in
case if other model parameters such as channel properties
are included in the simulation.

For runing simulations, after implementing a Dynasim
model object, it has to be passed to Dynalearn. Also, Dy-
nalearn will interact with the model according to the tuning,
training or task instructions such as restrictions, metrics, ob-
jectives and targets. In fact, Dynalearn acts as an interface
between the supervisor and the neuronal model (Fig.1).

Figure 1: Simplified Dynalearn-Dynasim interaction flowchart

Results
Replication of electrophysiology We began by record-
ing high-density neurophysiology spiking data from awake
macaque monkeys observing a visual drifting grating stimu-
lus. We perform these recordings in area MT/MST, areas
that have strong selectivity to this type of stimulus. For this
work, a single neurophysiology recording session was used
with 93 single neurons. In Dynasim, we modeled the underly-
ing MT/MST as a neural network with a total of 70 excitatory
and 30 inhibitory interneurons. The synaptic connectivity be-
tween these neurons was initialized using a random uniform
distribution. Background synaptic inputs to the model were

provided using a random gaussian noise process. Visual stim-
ulation was simulated by providing strong tonic input current
to all excitatory neurons from 1000ms to 1500ms. Using Dy-
nalearn, we modeled the spectral shift from beta (10-30Hz) to
gamma (40-90Hz) that occurs from pre-stimulus (0-1000ms)
to post-stimulus (1000ms-1500ms) processing. We asked Dy-
nalearn to minimize the difference between the neurophysio-
logically observed power spectrum of the spiking response to
the model’s power spectrum response in both post and pre-
stimulus periods. After training, both the individual spiking ac-
tivity (raster plot in Fig.2) and the population power spectrum
showed a high accuracy fit to the neurophysiological data. In
particular, the model was able to fit the shift from pre-stimulus
alpha-beta to post-stimulus gamma. In ongoing work, we plan
to explore different interneuron types and connectivity struc-
tures that can best explain this spectral shift.

Figure 2: Simulation results; pre-training (A) and post-trainin
(C) relative power spectrogram (B) post-training raster plot.
(Time axis is aligned for all subplots and onset-offset of the
stimulus is indicated by the dashed lines.)

Discussion
This abstract expanded computational approaches in neu-
roscience by proposing an automated process of studying
highly-detailed neural circuits. The main advantage of precise
biophysical neural models is that they are more comparable to
the brain. In addition, several unknown mechanisms contribut-
ing to computations performed by brain may be revealed by
unsupervised explorations. Moreover, our algorithm does not
assume model types and may be useful for non-physiologic
models such as ANNs and transformers. Our aim is to use
Dynalearn for testing hypotheses in predictive coding/routing
in order to evaluate proposed mechanisms such as the adap-
tation, prediction and inference.
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