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Abstract
Deep language models (DLMs) provide a powerful basis
for building encoding models and decoding models of
neural responses. However, DLMs are usually only used
to predict a single moment in the neural signal. We rea-
soned that decoding performance might be improved by
combining information across time, and leveraging the
temporal dependencies of neural activity. To test this,
we analyzed word-level decoding from electrocorticogra-
phy (ECoG) recordings of 9 participants who listened to
a 7-minute narrative. We found that DLM-based encod-
ing models could predict neural responses seconds be-
fore and after a word onset, and that the predictions did
not generalize across time intervals around word onset.
Moreover, we were able to boost decoder performance
by integrating information across distinct time intervals.
Thus, human brains represent diverse word-related in-
formation for hundreds of milliseconds before and after
word onset, and ensembling information over time is a
promising approach for naturalistic neural decoding.
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Introduction
How can we best decode mental states from neural signals?
Solving this problem is not only of theoretical interest, but
also has wide-ranging practical and therapeutic implications
(Anumanchipalli, Chartier, & Chang, 2019). Contextual em-
beddings extracted from autoregressive deep language mod-
els (DLMs) were used to model human brain’s responses to
naturalistic narratives (Goldstein et al., 2022; Caucheteux,
Gramfort, & King, 2022). Notably, these encoding models can
predict neural responses for several seconds before and after
the onset of a word. Although some recent models aggre-
gate neural data across time points to decode linguistic con-
tent (Goldstein et al., 2022; Tang, LeBel, Jain, & Huth, 2023),
it remains unclear (i) whether neural signals at different time
lags surrounding word onsets encode mostly redundant or dis-
tinct information and (ii) which aspects of language decoding
are boosted by integrating across time. To fill this gap, here
we apply encoding and decoding analyses to human electro-
corticography (ECoG) responses to a spoken narrative, in or-
der to characterize the time-varying nature of language re-
sponses.

Methods
Preprocessing

Raw ECoG recordings from 9 participants were re-referenced
(common average) and high-pass filtered at 0.1 Hz, following
exclusion of electrodes with visually apparent artifact or noise.
We used six-cycle Morlet wavelets to estimate the spectral
power at each of [70, 75, 80, 85, ..., 200] Hz. The power
time-series were log-transformed, z-scored and then mean-
averaged to obtain a single ”broadband” high frequency power
estimate (Goldstein et al., 2022). To focus on electrodes with
robust stimulus-locked signal, we selected from each partici-
pant the 3 electrodes with highest repeat reliability (Pearson
correlation of ECoG responses to two repeats of the same
narrative; Fig. 1, A), for a total of 27 ECoG electrodes.

Encoding analysis

To predict neural responses (r) from contextual embeddings
(s), we implemented a linear ridge regression model ( f (s))
for each time lag relative to word onset (Goldstein et al.,
2022). Word embeddings were extracted from the hidden
representations in the 7th layer (Caucheteux et al., 2022) of
a 12-layer transformer language model (GPT-2, Radford et
al., 2019). We reduced the dimensionality of embeddings
from 768 to 30 using principal component analysis. The neu-
ral responses were averaged across a 200-ms window for
41 lags from -4,000 to 4,000 ms in 200-ms steps relative to
word onset. We used 10-fold cross-validation to split the data
(Nsamples = 1002) into training and test sets. The correlation
between actual and predicted neural responses in test data
was averaged across the 10 test-folds. We evaluated encod-
ing models’ generalization performance across time lags by
computing the Pearson correlation between the actual neural
signal at one lag and the predicted signal based on encod-
ing weights obtained at another lag (King & Dehaene, 2014).
The encoding performance and temporal generalization per-
formance were evaluated in each electrode and then averaged
across the 3 electrodes for each participant. Finally, we com-
puted the grand mean correlation across the 9 participants.

Decoding analysis

We leveraged the contextual encoding models to decode
word identities from neural responses surrounding word on-
set. We computed the likelihood of observing the neural re-
sponses r given a word embedding s as P(r|s) ∝ exp{−[r−



Figure 1: A) Selected electrodes with high repeat reliability; B) Cross-validated encoding performance as a function of time lag
relative to word onset. The shaded regions indicate the s.e.m. of encoding model performance across participants; C) Temporal

generalization performance of the encoding models; D) Decoding performance as a function of the time window provided.

f (s)]Σ−1[r− f (s)]T}, where Σ is the noise covariance matrix
(Nishimoto et al., 2011; Tang et al., 2023). For each unique
word in the story we generated a likelihood using the model.
We then calculated the decoding score for each target word as
the fraction of words with a lower likelihood than that assigned
to the target word. The decoding analysis was performed for
windows of varying lengths relative to word onset, providing
a measurement for how well the word could be decoded by
aggregating ECoG signals across lags around word onset.

Results and Discussion

Using the contextual embeddings from GPT-2, the model pre-
dicted neural responses with a correlation greater than 0.3 at
word onset. Lower, but still statistically reliable prediction was
obtained out to 2 seconds before and after the onset of words
(Fig. 1, B). The encoding models trained on neural data before

word onsets did not generalize to neural responses after word
onsets, and vice-versa (Fig. 1, C, off-diagonal quadrants ver-
sus diagonal quadrants, p < .001). Thus, pre- and post-onset
time periods encode distinct and non-redundant information.
This is consistent with the observation that decoding perfor-
mance was improved by including neural responses both be-
fore and after word onset (Fig. 1, D). The decoder with access
to neural signals out to 2 seconds before and after word on-
set significantly outperformed the decoder only using signals
100ms before and after word onset, t(8) = 5.88, p < .001.

During naturalistic listening, the human brain encodes distinct
word-related information before and after word onset. Aggre-
gating information over time significantly improved the ability
to decode words from neural responses. We are now inves-
tigating the distinct lexical and semantic properties that are
available before, around, and after word onsets.
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