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Abstract: 

As individuals transition from childhood to adolescence, 
alcohol sipping and drug initiation increases. Early 
alcohol exposure can lead to risky alcohol consumption 
and alcohol dependence later in life. We previously used 
data from the Adolescent Brain and Cognitive 
Development Study (ABCD) to detect latent alcohol 
sipping trajectories over time. In the current study we 
examined brain imaging data measured at baseline as a 
potential biomarker in predicting alcohol sipping 
patterns. We used several popular machine learning 
methods on structural (sMRI) and resting-state 
functional magnetic resonance imaging data (rs-fMRI) 
separately and then combined to detect important 
features that can predict alcohol sipping in children aged 
between 9 and 14. Ridge regression showed the best 
performance and results show that the latent alcohol 
sipping groups can be better predicted by rs-fMRI data 
than by sMRI data at baseline.  
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Introduction 

Adolescence is a critical period for brain and body 
development, and early structural and functional brain 
changes can influence future risky behaviors, including 
alcohol and drug use (Honarvar et al., 2023; May et al., 
2022; Squeglia et al., 2017). Brain development in 
adolescence involves a peak in gray matter volume 
followed by a decline into adulthood, while white matter 
volume steadily increases until mid-to-late 
adolescence before slowing (Lebel et al., 2012). 
Neuroanatomical predictors of adolescent alcohol 
consumption include thinner cortices, lower gray matter 
volume, and decreased surface area in regions linked 
to reward and executive function, although findings are 
inconsistent (Honarvar et al., 2023). Functional 
connectivity, particularly in networks like the default-
mode, salience, frontoparietal, and dorsal attentional 
networks, has also been studied as a predictor of 
transitioning from minimal to heavy drinking in 
adolescents (Fede et al., 2019; Ramage et al., 
2015).While much research has focused on brain 
alterations in adolescents who use alcohol, there is a 
gap in understanding abnormalities that precede 
alcohol initiation, especially in longitudinal studies 
(Feldstein Ewing et al., 2014). Our study aims to use 
machine learning techniques to identify potential risk 
factors for adolescent drinking patterns over time by 
analyzing multimodal neuroimaging data. 

 

Methods 

Alcohol sipping 

We used three previously identified latent classes 
representing alcohol sipping trajectories over time in the 
Adolescent Brain and Cognitive Development (ABCD) 
study, categorized as no-sip group (84.22%, N=9700), 
low-sip group (5.34%, N=615) and high-sip group 
(10.44%, N=1202) (Ferariu et al., under revision). 
Figure 1. shows the average curve of the three latent 
classes representative of alcohol sipping behavior over 
time in the ABCD cohort.
 

 

Figure 1: The average curve for the latent classes 
representing the sipping behavior over time in the 
ABCD cohort and the corresponding standard error. 

Brain imaging data 

We obtained multimodal brain imaging data including 
T1-wighted structural brain imaging (sMRI) of 34 
regions of interest (ROIs) in each hemisphere based on 
the Desikan atlas and resting state functional brain 
imaging (rs-fMRI) for average pairwise ROIs 
correlations between and within 13 cortical networks 
parcellated based on the Gordon atlas (auditory 
network, audN; cingulo-opercular network, CON; 
cingulo-parietal network, CPN; default-mode network, 
DMN; dorsal attention network, DAN;  fronto-parietal 
network, FPN; retrosplenial temporal network, RTN; 
salience network, SN; sensorimotor hand network, 
SMNh; sensorimotor mouth network, SMNm; ventral 
attention network, VAN; visual network, visN). The 
neuroimaging data was pre-processed by the ABCD 
study using FreeSurfer software (Fischl, 2012), while 
the pipeline can be found elsewhere (Hagler et al., 
2019). We selected the participants with complete 
baseline sMRI data (N=10741) and rs-fMRI data 
(N=10096), as well as latent class data (N=11517). We 
excluded participants with poor or incomplete 
Freesurfer deconstruction and subjects who should 
consider clinical referral.  



Alcohol sipping patterns prediction with 

multivariate pattern analysis 

We ran multivariate pattern analysis (MVPA) by training 
several popular machine learning methods, such as 
support vector machines (SVM) with radial kernel, 
LASSO, Elastic net and Ridge regression. We 
conducted binary classification for 3 different contrasts: 
no-vs-high sip, no-vs-low sip and low-vs-high sip. For 
each contrast, data were split into a training set (75% of 
the data) and test set (the remaining 25%). We used a 
10-fold cross validation on the training set, extracting 
the parameter of regularization that provided the 
minimum mean cross-validation error and then we 
evaluated the performance on the test set. We 
assessed model performance from accuracy, sensitivity, 
specificity and the area under the receiving operating 
characteristic (ROC) curve (AUC). Since the data was 
imbalanced, we over- and under-sampled the data 
during the training stage. The models were run with 
sMRI data and rs-fMRI data separately and with both 
modalities combined. 

Results 

Results show that the latent alcohol sipping groups can 
be better predicted by rs-fMRI data than by sMRI data 
at baseline. Additionally, combining both modalities did 
not yield significant improvement in prediction accuracy. 
The model with ridge regression performed best on all 
three contrasts. Table 1. shows the prediction 
performance for the three contrasts using ridge 
regression. The prediction accuracy was significantly 
better than random guessing for all three contrasts (p < 
0.001). Moreover, the 95% confidence interval for the 
AUC of all three contrasts was above 0.5. 

Table 1: Prediction accuracy of ridge regression 

  No-vs-high 
sip 

No-vs-low 
sip 

Low-vs-
high sip 

Accuracy 0.57 0.60 0.57 

Sensitivity 0.51 0.50 0.59 

Specificity 0.58 0.60 0.53 

AUC 0.55 0.55 0.56 

 

Figure 1. shows the top 15 predictive brain imaging 
features for each of the three contrasts and their 
corresponding coefficients with 95% confidence 
intervals. For positive coefficients, a larger functional 
network correlation would increase the likelihood of 
belonging to the group with more alcohol sipping over 
time. Negative coefficients imply that a larger functional 
network correlation would decrease the likelihood of 
belonging to the group with more alcohol sipping over 

time or in other words it would increase the likelihood of 
belonging to the group with less alcohol sipping over 
time.  

 

Figure 1: Top 15 features based on the magnitude of the 
coefficients for the (a) no-vs-high sip, (b) no-vs-low sip 
and (c) low-vs-high sip contrasts with corresponding 95% 
confidence intervals.  

Positive correlations at baseline between the DMN, 
SN and FPN were indicative of participants belonging 
to the high-sip group rather than no-sip group. 
Additionally, participants exhibiting positive DMN-DAN, 
SN-DAN and CON-FPN correlations at baseline were 
more likely to belong to a group that sips more on 
average over time. Conversely, those with SN-DAN 
anticorrelations at baseline were more likely to be in the 
group that sips less or not at all over time. There were 
some inconsistencies in the coefficients for the DMN - 
SN correlation and DAN - FPN correlation across the 
three contrasts, which might arise from the small 
difference in the average number of alcohol sips 
between the low-sip and high-sip groups. 

Conclusion 

Resting-state functional connectivity can serve as a 
biomarker for predicting alcohol sipping patterns as 
individuals transition from childhood to adolescence. 
Previous research has focused on single modalities or 
older adolescents, but our study examines multimodal 
brain imaging features in participants as young as 9-10 
years old to predict sipping behavior (Honarvar et al., 
2023). However, a limitation is the young age of the 
participants, which may affect data quality due to 
participants' difficulty in staying still. Moreover, 
incorporating demographics, family characteristics, 
personality traits, and psychopathology could enhance 
prediction.
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