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Abstract
Convergent and divergent structure in the networks that
comprise biological brains is found universally across
many species and brain regions at various scales. Given
the frequency with which this structural motif is ob-
served, we investigate what its functional role may be.
While previous theories have neglected the role of neu-
ronal spiking, our model and analysis places this as-
pect at the forefront. For a suite of stimuli with dif-
ferent timescales, we demonstrate that bottlenecks cre-
ated by network convergence have a stronger preference
for spike timing codes than expansion layers created by
structural divergence. Our work makes quantitative pre-
dictions concerning the relationship between a network’s
convergent structure and the optimal timescale it can
use to encode a dynamic stimulus. These predictions
suggest a connection between network architecture and
information-processing capabilities hitherto unexplored,
which could be confirmed experimentally in future stud-
ies.
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Introduction
Nervous systems are networks of neurons with highly non-
random structure (Turner et al., 2022). One particular struc-
tural motif that is observed in many species and brain areas is
that of the bottleneck, where a large group of neurons sends
signals to, or “converges onto” a much smaller group of neu-
rons. Conversely, there are also many instances of expansion
networks where a small population of neurons synapses with
a much larger population; we refer to this as network “diver-
gence”. Although divergence and convergence are observed
in many brain areas like cerebellum, visuomotor pathways,
and olfactory systems, the computational implications of this
ubiquitous network structure are only beginning to be under-
stood (Muscinelli, Wagner, & Litwin-Kumar, 2023; Gutierrez,
Rieke, & Shea-Brown, 2021). In particular, we are aware of
no studies that have characterized how convergence and di-
vergence influences information coding in networks of spik-
ing neurons. Such a paradigm is especially curious in light

of growing experimental evidence demonstrating that precise
spike timing can be much more informative about sensory in-
put (Nemenman, Lewen, Bialek, & de Ruyter van Steveninck,
2008) and motor output (Srivastava et al., 2017; Putney, Conn,
& Sponberg, 2019) than spike count. Thus, our aim is to show
how convergent and divergent feedforward network structure
promotes or suppresses spike timing codes in a stimulus-
dependent way.

Results

We focus on feedforward spiking network models with multiple
layers of neurons. For each time-dependent stimulus tested,
the network parameters are optimized so that the output layer
encodes the stimulus provided to the input layer. This is done
in a way that is agnostic to the particular coding strategy em-
ployed by the output layer, by forming an estimate of the stim-
ulus s via:

ŝ = αŝtime +(1−α)ŝcount (1)

where ŝtime is an estimate based on the spike timings of the
output layer and ŝcount is one based on the spike counts. We
set α = 0.5 to weigh these equally. After training the networks
(Eshraghian et al., 2023) to minimize the mean-squared er-
ror between true stimulus s and ŝ from Eq. (1), we decode
the stimulus separately from each layer’s population spikes
binned over a range of time scales ∆t to assess the extent to
which that layer encodes information more with a spike timing
(smaller ∆t) or spike count (larger ∆t) code.

In our main results, we analyze 3-layer networks, keeping
the number of input neurons and the number of output neu-
rons fixed at Nin = Nout = 100 while modulating the number
of neurons in the middle hidden layer Nh. Stimuli with a vari-
ety of timescales are tested to evaluate what role the input
pattern plays in promoting or suppressing timing v.s. count
codes. Given the respective increase/decrease in dimension-
ality from divergence/convergence, respectively, we hypothe-
size that bottlenecks promote timing codes whereas expan-
sion networks promote count codes.

Results are shown for sum-of-sines stimuli of various fre-
quencies in Fig. 1, where we use a support vector machine



Figure 1: Structural convergence from the hidden layer to
the output layer promotes timing codes across all stim-
ulus frequencies. (A) Stimuli used here are sums of sines
with a fixed component flow = 4 Hz added to a variable com-
ponent fhigh (B) Mutual info Im between the true stimulus and
the decoded stimulus based on the output layer spikes binned
at time resolution ∆t (C) Slope of Im v.s. ∆t curves as a func-
tion of the high frequency stimulus component fhigh. Asterisks
denote where a one-sided Wilcoxon rank-sum test is signifi-
cant at p < 0.05.

to decode the stimulus from the population spiking of neu-
rons comprising the output layer. The mutual information Im
between the decoded stimulus and true stimulus is shown in
Fig. 1B as a function of ∆t for two types of networks: the bot-
tleneck network with Nh = 10 and an expansion network with
Nh = 1000. In both networks, output layer information about
slow stimuli (i.e. 5 Hz) is maximized at large values around
∆t = 50 or 60 ms, whereas faster stimuli (i.e. 50 Hz) are opti-
mally encoded at smaller timescales around ∆t = 10 ms. The
preference for timing v.s. count codes is quantified in Fig. 1C
with the slope of the Im v.s. ∆t curves by finding the best line
fit. Across all stimulus frequencies tested, the slopes are more
negative in the expansion network than the bottleneck net-
work, indicating that structural convergence from the hidden
layer to the output layer promotes temporal spike coding in
the output layer.

While the results of Fig. 1 address how the coding strategy
of populations of neurons post-synaptic to structural expan-
sion v.s. compression differ, they do not indicate what cod-
ing strategy is optimal in the bottleneck/expansion layer itself.

Figure 2: Bottlenecks have more to gain from temporal
codes than expansion layers. Stimulus used here is a 4
Hz + 20 Hz sum of sines. (A) Decoding accuracy from the
hidden layer spikes as a function of ∆t. Gray dots denote
points used to compute accuracy gain. (B) Accuracy gain of
the temporal code over the count code when reconstructing
the stimulus based on spikes from the hidden layer, for bottle-
neck and expansion networks. One-sided Wilcoxon rank-sum
test p = 5.8×10−4.

In Fig. 2 we show results from our decoding analysis of the
hidden layer for both the bottleneck and expansion network.
Fig. 2A shows the decoding accuracy R2 from the hidden layer
as a function of ∆t for both networks. In either case, the max-
imum R2 occurs at a small value of ∆t = 10 or 20 ms and
a local minimum occurs around ∆t = 70 ms. The difference
in R2 between these points is the accuracy gained by using
a temporal code over a count code, and is plotted in Fig. 2B
for Nh = 10 and Nh = 1000. From these results it is clear
that, although higher accuracy is achieved by the expansion
layer across all ∆t ’s, the gain in accuracy from using a tem-
poral code is significantly higher in the bottleneck than in the
expansion layer.

Discussion
Our results show that temporal coding of a variety of stimuli
is promoted by structural network convergence. Past studies
have considered models of neural networks where the activity
of units is static or smooth, and are thus limited to the context
of continuous firing rate codes (Muscinelli et al., 2023; Gutier-
rez et al., 2021). In reality, biological neurons communicate
with each other at the discrete times defined by their action
potentials. The model developed and analyzed here reflects
this reality, thus revealing a novel structure-function relation-
ship in spiking neural networks. This work makes concrete
predictions about how the relative information in spike timing
v.s. count is modulated by structural divergence and conver-
gence, and could be tested in experimental models with simi-
lar divergence/convergence ratios.
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