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Abstract
Previous research have reached mixed findings about
whether single or multiple latent factors contribute to
human intelligence. In order to resolve this conflict,
the present study merged brain representational maps
for 25 cognitive tasks from Neurosynth and NeuroQuery
dataset, and performed exploratory factor analysis to find
latent factors that explains the variance between the brain
representations of different cognitive tasks. Then we re-
versely mapped the factor weights onto brain voxels to
examine their locations. The results showed that five
factors could be extracted, one factor could be viewed
as ”domain-general” and contributed to different aspects
of intelligence, while other four factors are ”domain-
specific” since each factor corresponded to specific func-
tions including inhibition, episodic memory, emotion, and
language. The reverse mapping of these factors further
confirmed this finding by showing that ”domain-general”
factor mainly located in the multiple demand system that
previously defined to be closely related with general intel-
ligence, and ”domain-specific” factors mainly located on
specific brain regions that process related information.
For example, episodic memory factor on hippocampus
and visual cortex, language factor on auditory cortex and
broca area. These findings indicated that both ”domain-
general” and ”domain-specific” factors exist and con-
tribute to human intelligence.
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Introductions
The cognitive construct and neural substrates underlying hu-
man intelligence have been attracting researchers for a long
time. The g-factor is a latent factor extracted from behav-
ioral results of different cognitive tasks (Spearman, 1961),
and has been shown to closely related to academic success
(Rosander et al., 2011). Corresponding to the behavioral g-
factor, Duncan (2010) identified multiple demand (MD) sys-
tem distributedly located in the brain that contributes multiple
cognitive processes (Fedorenko et al., 2013).

However, some other studies indicated that human intelli-
gence could not be explained by a single g-factor but multi-
ple latent factors (Visser et al., 2006; Castejon et al., 2010).
Furthermore, recent neuroimaging studies also found that be-

sides MD systems, many domain-specific regions actively in-
teract with each other to enable intelligent behavior in differ-
ent task context (Hampshire et al., 2012; Soreq et al., 2021).
Therefore, a mixed finding exist in the cognitive construct and
neural substrates of human intelligence.

In the current project, we aimed at resolving the latent struc-
ture of human intelligence with factor analysis on large-scale
functional neuroimaging meta-analysis. We identified core
factors that contributes to the variance of brain representa-
tions in different cognitive tasks, and then reversely mapped
the factor weights onto brain voxels to understand the func-
tions of the factors (see flow chart in Figure1).

Methods

Data Extraction

We used the latest version of the Neurosynth dataset Yarkoni
et al. (2011) and NeuroQuery dataset Dockès et al. (2020).
Both of the datasets include more than 13,000 fMRI studies
and over 500,000 activation coordinates covering the whole
brain. Each of the studies in the databases were represented
by a Pubmed ID, peak activation coordinates and weighted
topic associations. For selecting appropriate labels for cog-
nitive tasks, we used the task terms in the Cognitive Atlas
knowledge base Poldrack et al. (2011).

Multi-Level Kernel Density Analysis

After extracting studies associated with each cognitive tasks,
we conducted fMRI meta-analysis using NiMARE v0.0.11
Salo et al. (2022, 2023). Since Neurosynth and NeuroQuery
datasets did not provide information for subject number in
each study, we used MKDA algorithm Wager et al. (2007) in-
stead of Activation Likelihood Estimation (ALE) or Seed-based
Mapping algorithms (SDM) to perform the meta-analysis.

Factor Analysis

The exploratory factor analysis (EFA) results were based on
principal component extraction with eigenvalues greater than
1, and a threshold of 0.4 was used to determine the presence
of loadings. In the resulting figure, solid lines indicate primary
loadings, while dashed lines represent secondary loadings.
Factors F1 to F5 are sorted by coefficient magnitude. For a
given factor, loadings are sorted from highest to lowest.



Figure 1: Flow chart of the analysis included in the present
study. In general, we first extracted fMRI studies corre-
sponding to each task from the Neurosynth and NeuroQuery
dataset. Then we conducted MKDA meta-analysis to calcu-
late brain representation maps for all tasks. After that we used
exploratory factor analysis to reveal core factors that explained
50% of the task variance.

Results

Included Studies

According to previous studies, we filtered task terms in Cogni-
tive Atlas that associated with more than 5 studies to generate
reliable result maps for each task (Müller et al., 2018). As a re-
sult, we included 25 tasks covering tasks that measured differ-
ent aspects of cognitive processing (e.g., executive functions,
episodic memory, emotions, decision-making, and language).
The number of studies associated with each term ranged be-
tween 6 to 158, with a mean of 62.4 studies. Please see ex-
ample result maps generated by MKDA algorithm in Figure2.

Figure 2: Example brain activation maps for six cognitive tasks
generated by MKDA algorithm in NiMARE.

Five Latent Factors Extracted
The results from EFA indicated that five latent factors could
be extracted from the brain maps of the 25 cognitive tasks.
The F1 explains the most variance (%34) and is associated
with task associated with working memory (n-back task), flex-
ibility (task-switching task), attention (selective attention task),
episodic memory (recognition memory task) and inhibitory
control (stroop task), therefore, F1 could be defined as a gen-
eral factor that involves in different cognitive processes. The
F2 is mainly associated with inhibitory control and decision-
making tasks. The F3 is correlated with tasks that measured
visual emotions and language. The F4 has high loadings on
episodic memory tasks (memory encoding task), and the F5
associates with language tasks (see Figure 3A).

Figure 3: (A) Results from EFA, solid lines represent factor
loadings larger than 0.4, while dash lines represent those
smaller than 0.4. (B) The spatial mapping of five factors on
human brains, the color bar represents the factor weights.

Spatial Mapping Corresponds to Factor Functions
The reverse mapping of factor weights onto brain voxels
showed how the latent factors are located on the brain (see
Figure 3B). The mapping of F1 shows a large overlap with
the MD system (Duncan, 2010), which has been shown to
be involved in many cognitive aspects and closely correlated
with human intelligence. The dorsal lateral prefrontal cortex
(DLPFC) and anterior cingulate cortex showed high weights
of F2, which consist with previous findings that DLPFC and
ACC are responsible for conflict monitoring (Kerns et al., 2004;
Aron et al., 2014) and uncertainty (Krain et al., 2006; Dixon
& Christoff, 2014). The F3 mainly located on amygdala that
responsible for emotional response and visual cortex. The F4
highly concentrated on visual cortex and hippocampal regions
that crucial for episodic memory reactivation (Xue et al., 2010;
Kuhl et al., 2012). Finally, auditory cortex and broca area have
the highest weights for F5.



Conclusions
The results showed that five factors underlies human intel-
ligence, with one ”domain-general ”factor that contributed to
different aspects of intelligence, while other four ”domain-
specific” factors that each corresponded to specific functions.

Then, the reverse mapping of these factors further con-
firmed this finding by showing that ”domain-general” factor
mainly located in the MD system, and ”domain-specific” fac-
tors mainly located on specific brain regions that process
related information. For example, inhibition and decision-
making factor on ACC and DLPFC, emotion on amygdala,
episodic memory factor on hippocampus and visual cortex,
language factor on auditory cortex and broca area. These
findings indicated that both ”domain-general” and ”domain-
specific” neural factors exist and contribute to human intelli-
gence.
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