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Abstract: 

Numerous studies have highlighted the impact of 
emotional information on visual perception. However, 
the extent to which emotional information is encoded 
and processed in visual representations when viewing 
scenes remains unclear. Here, we conducted 
representational similarity and variance partitioning 
analyses to explore the visual representations of scenes 
containing emotional and neutral information in 
convolutional neural networks. Our results indicated an 
increasing similarity between emotion and VGG-16 
RDMs, starting from the third convolutional layer, with 
higher similarities observed for negative images 
compared to neutral ones. Moreover, variance 
partitioning results showed that emotion model 
exhibited an increasing trend in explained variance from 
shallow to deep layers, whereas color model revealed a 
converse pattern of decreasing variance. Importantly, 
emotion model displayed significantly higher unique 
explanatory power for VGG-16 RDMs when comparing 
negative images to neutral ones beginning at the fourth 
layer, suggesting emotional enhancement within visual 
representations. Overall, our findings demonstrated the 
hierarchical integration of emotional information within 
the visual representation underlying scene perception. 
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Introduction 

Emotional information from the external environment 
has been shown to influence the processing of visual 
perception (Zadra & Clore, 2011). Neuroimaging 
studies have demonstrated that emotional information 
affects not only neural responses in the limbic areas but 
also the visual cortex (Kuo et al., 2018; Saarimäki et al., 
2016; Sambuco et al., 2020). However, little is known 
about the extent to which emotional information is 
encoded and processed in visual representations when 
viewing scenes. 

This study aims to investigate scene perception, 
specifically focusing on emotional and neutral 
information, using convolutional neural networks 
(CNNs). Employing representational similarity analysis 
(RSA), we integrated the behavioral performance of 
emotional ratings with the CNNs to access the layer-
wise visual information (Cichy et al., 2014; Dobs et al., 
2023). Moreover, we utilized variance partitioning 
analysis (VPA) to explore the unique contributions of 
emotional and low-level features to the total variance of 
visual representations within CNNs (Groen et al., 2018; 
Jozwik et al., 2023). Our findings provide novel 
evidence on how visual representation underlying 
scene perception hierarchically integrates emotional 
information. 

Figure 1: Layer-wise similarities between the RDMs of 
emotional ratings and VGG-16 model. The asterisks on 
the bottom of the figure indicate significant emotional 

enhancement on representational similarities. 



Method 

Stimuli consisted of the natural images including 192 
negative and 192 neutral scenes. Participants (N = 35) 
were recruited to rate the emotional scores of 384 
scene stimuli based on a two-dimensional valence-
arousal space. Next, we employed the VGG-16 model 
in PyTorch, which had been trained on the ImageNet 
dataset for object recognition (Simonyan & Zisserman, 
2014), to derive the layer-wise visual representations 
for each scene image.  

Representational Similarity Analysis 

For behavioral and VGG-16 model measurements, 
pairwise dissimilarities across all combinations of 
scenes were computed via Euclidean distance and one 
minus Pearson’s correlation coefficient respectively, 
yielding representational dissimilarity matrices (RDMs). 
Spearman correlation coefficients were then calculated 
between the RDM for each participant’s ratings and the 
RDM of each layer of the VGG-16 model, offering a 
hierarchical profile of emotional information within the 
visual processing hierarchy. Furthermore, we divided 
the 384 x 384 pooled RDM into two 192 x 192 RDMs for 
negative and neutral scenes, to examine the effect of 
emotional information on representational similarity. 

Variance Partitioning Analysis 

To examine the contributions of emotional and low-level 
features, we further adopted color and gist models to 
extract visual features for each scene image (El-Gayar 
et al., 2013; Oliva & Torralba, 2001). Pairwise 
dissimilarities across all scenes were used to construct 
RDMs for both color and gist models. The RDM for 
emotion model was identical with the RDM for each 
participant’s ratings. Initially, we simultaneously fitted 
the RDMs of emotion, color, and gist models to predict 

VGG-16 RDM for each layer (full GLM), as well as fitted 
two of the three models individually (reduced GLMs). 
The unique variances explained by each model were 
then estimated by contrasting the variance explained by 
the full GLM with that explained by the reduced GLM. 
The procedure was carried out separately for each 
RDM of negative, neutral and pooled scene images. 

Statistical Inference 

In the results of RSA and VPA, statistical tests at the 
group level were conducted to test the layer-wise 
difference between negative versus neutral scenes 
using dependent samples t-tests. Multiple comparisons 
were corrected using false discovery rate of 0.05. 

Results 

By integrating the VGG-16 and emotion rating data via 
RSA, we first accessed the degree to which emotional 
information was processed within visual 
representations across layers of VGG-16. The similarity 
results of negative, neutral and pooled images are 
illustrated in Figure 1. We observed a gradual rise in 
similarities in pooled images starting from the third layer. 
Moreover, significantly higher similarities were found in 
negative images compared to neutral images, 
beginning from the third layer and persisting up to the 
final layer. The results suggested that emotional 
information is represented within the visual processing 
of VGG-16. 

Importantly, we examined the contribution of emotion 
and other low-level visual features to visual 
representations based on the unique variance 
explained by each RDM of emotion, color and gist 
models using VPA. These results are illustrated in 
Figure 2. Variance partitioning results (Fig. 2A) showed 
that color model outperformed both gist and emotion 
model in explaining visual representation in the first 

Figure 2: (A) Unique explained variance for color, gist and emotion models in pooled images. (B) Unique 
explained variance for emotion model in negative and neutral images. The asterisks indicate significant 

emotional enhancement on representational similarities. 



layer of the VGG-16. By the eighth layer, the 
performance of gist model peaked and subsequently 
declined gradually across subsequent layers. 
Importantly, compared to neutral images, emotion 
model exhibited significantly higher unique explanatory 
power for VGG-16 RDMs in negative images, beginning 
at the fourth layer (Fig. 2B). Together, these results 
indicated emotional enhancement within visual 
representations of VGG-16. 

Conclusion 

Our findings of RSA and VPA illustrate the hierarchical 
processing of emotional information within the layer-
wise visual representation of VGG-16. This study 
provides novel evidence supporting a hierarchical 
organization of emotional information within the coarse-
to-fine visual processing pathway. 
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