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Abstract
Musical imagery is the internal re-creation of music with-
out external auditory input. While numerous studies have
investigated the neural correlates of musical listening and
imagery, fewer have explored the encoding of acoustic
features during the latter. In this study, we employ Multi-
variate Temporal Response functions (mTRFs) to exam-
ine how melodic features, such as note onsets, enve-
lope and envelope onsets, are encoded in magnetoen-
cephalography (MEG) responses during both musical lis-
tening and imagery. Our analysis reveals that note onsets
and envelope onsets significantly predict MEG responses
in both listening and imagery conditions. Notably, corre-
lations between these acoustic features and neural activ-
ity are evident at both group and individual levels. Fur-
thermore, prediction correlation topographies show in-
creased correlation values in channels located above the
temporal lobe during both listening and imagery tasks.
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Introduction
Musical imagery is an endogenous voluntary act of hearing
music in our mind without any auditory sensory input (Koss-
lyn et al., 2001). Understanding the underlying brain activity
during musical imagery tasks can reveal the very basic levels
of auditory processing in the brain. Also, studying the brain
in imagery tasks holds many applications in Brain-Computer
Interfaces (BCIs) for tasks such as speech recognition based
on imagined speech.

Previous studies have shown that auditory imagery tasks
share several brain regions with auditory listening tasks (Za-
torre et al., 1996; Halpern & Zatorre, 1999; Halpern et al,
2004; Zhang et al., 2017), but less research has been done
to study the temporal neural processing during auditory imag-
ination. One challenge in investigating imagery tasks lies in

precisely timing participants’ onset of imagination. However,
utilizing melodic stimuli with inherent temporal structures and
engaging highly trained musicians adept at synchronizing with
rhythmic stimuli can mitigate this issue. Marion et al. (2021)
have used the same idea and have shown that melodic ex-
pectations are encoded in neural signals during listening and
imagery.

In this study, we extend this line of inquiry to under-
stand how the brain processes and encodes musical informa-
tion. We use melodic stimuli and highly-trained musicians in
a magnetoencephalography task, which is a high-temporal-
resolution neuroimaging technique. We investigate how the
acoustic features of the stimulus are encoded in imagery and
listening responses.

Materials and Methods
Experimental Procedure

15 healthy and professional musicians (9 males) with self-
reported normal hearing participated in the experiment. The
experiment was approved by Institutional Review Boards of
University of Maryland. Written, informed consent was ob-
tained from participants prior to recording, and monetary com-
pensation was given.

MEG data was recorded in whole head KIT (Kanazawa In-
stitute of Technology) system, with 157 axial gradiometers at
1 kHz sampling rate with an online 500 Hz low pass filter, and
a 60 Hz notch filter.

The experiment included two melodic stimuli from a MIDI
corpus of Bach chorales. Each stimuli was repeated in 10 lis-
tening and 10 imagery trials in a randomized order, giving a
total of 40 trials per recording. The participants were provided
with the stimuli a few days before the recording session to
practice and prepare for the imagery task. To make sure that
the participants performed the imagery task with high tem-
poral precision, a visual clock-shaped metronome with 120
bpm downbeat was presented on the screen. The metronome



flashed every 2 seconds marking the start of each clock.

Preprocessing
Saturating and dead channels were removed. A zero-phase
third-order Butterworth filter was used to filter the MEG re-
sponses from 0.1 Hz to 8 Hz. The Denoising Source Separa-
tion (DSS) technique was also used to denoise the responses
by keeping its first seven components (Cheveigne & Simon,
2007). Data was z-scored and downsampled to 100 Hz. To
remove the visual artifact caused by the flash onsets, notes
closer than 500 ms from the flash onset were removed.

Encoding Analysis
Multivariate Temporal Response Functions (mTRF): We
used the mTRF toolbox (Crosse et al., 2016) to linearly map
the stimulus features into MEG responses.

r(t,n) = (s∗ωn)(t)+ ε(t,n) (1)

r(t,n) is the MEG response at time t at channel n, ω is the
kernel we are looking to estimate, s is the stimulus feature,
and ε(t,n) is the estimation residual to be minimized. ε(t,n)
has been minimized using ordinary least square method along
with a regularization parameter that was determined using
leave-one-out cross-validation.

Three acoustic features of the stimuli were used to estimate
the TRFs: 1) Note Onsets: A vector of zeros and ones where
the ones occur at the onset of each note. 2) Envelope: Acous-
tic envelope of the stimulus. 3) Envelope Onsets: Half-wave
rectified envelope’s derivative across time.

Forward TRF models are trained on each channel indepen-
dently. To evaluate the encoding of the above stimulus fea-
tures in the responses, the MEG response at each channel is
predicted using the trained TRF, and the linear correlation be-
tween the predicted MEG and the actual MEG is calculated.
To assess the significance of these correlation values, the or-
der of trials is shuffled so that there are no matching stimulus-
response pairs during the training. These null model TRFs are
then trained to minimize their prediction error with the shuffled
MEG responses. A gain distribution is derived by subtract-
ing the prediction correlation values of the null model from the
TRF model. A control distribution is made by subtracting the
null model correlation values from different repetitions of itself.
The Wilcoxon sum-rank test is used to evaluate whether the
correlation gain values are higher than the control distribution
correlation values.

Results
The encoding of stimulus features in listening and imagery
conditions is evaluated by calculating the TRF prediction cor-
relation of the forward model and the null model. The null
model is calculated across 20 repetitions of shuffling the or-
der of trials. To create the control distribution the correlation
values in each shuffling are subtracted from the other 19 repe-
titions. These gain and control distributions are calculated for
each participant separately meaning that the forward model

correlation values of each participant are only subtracted from
its own null correlation values. The group-level histograms
of correlation gain values in control and gain distributions are
shown in Fig. 1 and 2, panels (a) and (d). Each point on the
histogram indicates a participant and a trial.

Figure 1: Melody onsets encoding during musical listening
(top), and imagery (bottom). a,d) Correlation gain for control
(blue) and gain (red) distributions during musical listening (a)
and imagery (d). b,e) Topographies of correlation values of
the onset model during musical listening (b) and imagery (e).
c,f) Topographies of the null model correlation values during
listening (c) and imagery (f).

The gain distribution is significantly above the control for
two of melodic features, Onsets (Fig. 1) and Envelope On-
sets (Fig. 2) with p-value << 0.001. This means that a linear
function (TRF) convolved with the note onsets or the envelope
onsets can predict the MEG response with accuracies above
the chance level, and this holds for both listening and imagery
conditions.

Figure 2: Melody envelope onsets encoding during musical
listening (top), and imagery (bottom). a,d) Correlation gain
for control (blue) and gain (red) distributions during musical
listening (a) and imagery (d). b,e) Topographies of linear cor-
relation values of the onset model during musical listening (b)
and imagery (e). c,f) Topographies of the null model correla-
tion values during listening (c) and imagery (f).

Panels (b) and (e) in figures 1 and 2 show that the pre-
diction correlation topographies are higher above the tempo-



ral lobe. This means the channels located above the tempo-
ral lobe better encode the acoustic information of melodies.
The correlation topography patterns are similar during listen-
ing (top panels) and imagination (bottom panels).

In addition to group-level observations, the prediction cor-
relation values for each participant are shown in Fig. 3. At the
single participant level, in both listening and imagery condi-
tions, the TRF model prediction correlation values are above
the ones for the null model (p-value << 0.005).

Figure 3: Onsets (Blue) and Envelope (Red) Encoding Across
Participants. The x-axis shows the participants and the y-
axis shows the prediction correlation value averaged over the
channels and trials. Circle-shaped and square-shaped mark-
ers relate to the forward model and the null model respectively.
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