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Abstract

Humans are remarkably proficient in discerning objec-
tives and task nuances from observing others’ behavior.
This skill enables people to efficiently learn solutions for
tasks from demonstrations. However, one strategy may
be to simply imitate the observed actions while an alter-
native strategy is to infer the goals implicit in the ob-
served behavior. In this study, we designed a naviga-
tional task to investigate computational accounts of how
humans decide between the two strategies. Our primary
objective is to investigate how the information content
of provided demonstrations relates to the different ways
humans infer an agent’s policy, based on either infer-
ring the agent’s objectives or determining the agent’s ac-
tions based on similar situations. Our results challenge
prior findings and provide new perspectives for future re-
search.

Keywords: Inverse Reinforcement Learning; Decision-Making;
Learning from Demonstrations

Introduction

Humans are remarkably good at learning how to solve tasks
by merely observing the behaviors of others. Yet, how they
infer what to do in situations not shown to them might differ
depending on the circumstances. Imagine learning to make
tomato soup based on your family recipe. At first, you might
copy each step you see. But with experience, you might
start to understand why each step is important. Following the
recipe exactly is an easy way to make a good tomato soup,
but knowing why things are done helps to adapt the recipe
in new contexts, e.g., if ingredients differ slightly. Studies in
social cognition about theory of mind suggest that humans
build mental models of others based on their behavior by at-
tributing goals and utilities to their actions (Baker, Saxe, &
Tenenbaum, 2009; Jara-Ettinger, 2019; Jara-Ettinger, Gweon,
Schulz, & Tenenbaum, 2016), modeled by inverse reinforce-
ment learning (IRL). However, recent observations indicate
that in some situations, humans compare actions across sim-
ilar states when reconstructing a policy, as described by im-
itation learning (IL) models (Lage, Lifschitz, Doshi-Velez, &
Amir, 2019). Which type of inference is preferred in which sit-
uation is not clear. Here, we hypothesize that the choice of
inference depends on the complexity of inference of the re-
ward function, which captures the relationship between envi-
ronment features and objectives. In tasks where the reward
function consists of many complex features that are not easily
discernible from information in the demonstrations, it might be
preferable to imitate the behavior as closely as possible. In
cases where the demonstrations do not provide enough simi-
lar states to conclude the action, it might be better to infer the
actual goals from the demonstrations rather than to imitate di-
rectly. Here, we propose an experimental paradigm for distin-
guishing different types of inference from demonstrations. We
investigate whether humans deploy different inference types
dependent on measures of information content in demonstra-
tions for each type of inference.
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Figure 1: Task environment. Each trial showed five demon-
strations at the top, first the original and then the transfer
world. Arrows in blue and orange show the predictions of the
IRL and IL models, respectively, and the red squares indicate
the target areas (not shown to participants).

Methods

Experimental Design Participants (N=17) were asked to
navigate a robot on a foreign planet, represented by a 7 x 5
grid world as is shown in Figure 1, to collect a sample from
a specific area. Each grid cell was associated with different
fuel costs or the target area, distinguishable by their visual
appearance. The costs and the target area were unknown,
but actions of an optimal policy were shown in five demon-
strations, illustrating routes from five distinct starting points to
one of the target cells. The participant’s task was to move the
robot to a target area on the most cost-efficient route based on
the information shown in the demonstrations. The navigation
task can be formalized by a Markov Decision Process (MDP)
in a tuple (S,A,T,R), with S as the finite set of states (cells in
the grid world), 0, the feature vector of a state s (appearance
of the cell), and A the finite set of actions (four-movement di-
rections). The transition function T is deterministic, such that
the agent moves to the neighboring field in the direction en-
coded by the action. R is the reward function that associates
each state with a reward, dependent on its appearance. Reg-
ular (gray) states give a reward of -1; target cells a reward of
100; and other states reward between -1 and -20. To vary
the complexity of the reward function, we varied the number
of features, the density of non-regular states, and the number
of features associated with the reward of -1. In each of the 32
trials, participants had to navigate the robot in two conditions.
One in which the layout of the features matched the layout
shown in the demonstration (original condition). In a second
condition, the transfer condition, participants were shown the
same demonstrations; however, the world they had to navi-
gate the robot differed from the original layout. Importantly, the
rewards associated with the appearance of the cells stayed
the same. The transfer condition allowed us to gather partic-
ipants’ decisions from initial states where different inference
models predicted distinct actions (see Figure 1).



Models of Inference To ensure comparability with the study
of Lage et al. (2019), we use the same models for IRL-based
and IL-based inference. As a model for inverse reinforce-
ment learning, we use Maximum-Entropy Inverse Reinforce-
ment Learning (Ziebart, Maas, Bagnell, Dey, et al., 2008),
which infers a reward function by matching the expectation
of reward features of a candidate policy to the ones observed
in trajectories of an agent. We employ a Gaussian Random
Field (GRF) classifier as an IL-model, which predicts actions in
states based on comparable states as proposed in Zhu, Laf-
ferty, and Ghahramani (2003). The features provided to the
classifier correspond to the feature of the state the agent is in,
as well as the features of the four surrounding cells. As Lage
et al. (2019), we use the extension of the GRF to the multi-
class setting, where a one-vs-rest classification is performed
for each class. For model comparison, we map the classifica-
tion results to values between zero and one using a softmax
function on the class margins.

Choosing Demonstrations In each trial, we chose five
demonstrations, which either maximized the information for in-
ference with the IRL model or the inference with the IL model
using two algorithms also proposed by Lage et al. (2019).
To maximize the information for the IRL model, we used the
SCOT machine teaching algorithm (Brown & Niekum, 2019),
which selects the demonstrations that constrain all reward
functions to functions with associated behaviorally equivalent
policies to the optimal policy, its behavioral equivalence class
(BEC). The SCOT algorithm greedily chooses the demonstra-
tions that cover most of the constraints of the policy’s BEC
class. To maximize the information for IL-based inference, we
used an active learning approach proposed originally by Zhu
et al. (2003) with the adaptation used in Lage et al. (2019),
choosing demonstrations that minimize the prediction loss of
the GRF on states not included in demonstrations.

Information Content We define a measure for the infor-
mation content the demonstrations provide for each model.
The information content for the IL model represents how well
states in the demonstrations allow the comparison with other
states. We define it as the prediction loss of the IL model
on the unlabeled states in the original condition. For the IRL-
based inference, the information content is described by the
proportion of constraints covered of the BEC of a policy in the
original condition by demonstrations. It relates to the uncer-
tainty over possible reward weights the IRL algorithm could
infer.

Results

Figure 2 a) shows the proportion of suboptimal moves made
by each model and participants in each condition. The IRL
model and the participants outperform the IL model in both
conditions. The IL model performs worse in the original than
in the transfer condition, whereas both the IRL and the hu-
man performance remain stable over both conditions. Model
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Figure 2: Comparison of model and human behavior. a) Pro-
portion of suboptimal moves of the two inference models and
the participants for each condition. b) Negative log-likelihood
scores for the participants’ trajectories under each model. ¢)
Likelihood ratio of the models on individual trajectories in the
transfer condition, grouped by information content. 1m°%! rgp-
resents the information content for each model.

comparison of the human trajectories with each model (see
Figure2 b)) shows that in both conditions, the IRL model gen-
erally matches the participants’ decisions better than the IL
model. Figure 2 c) shows the likelihood ratio of the IL and
the IRL model for each trajectory in the transfer condition.
The trajectories are grouped by the information content in the
demonstrations. The IRL model better models most trajecto-
ries; however, some trajectories, 19 of the 224 trajectories, are
better explained by the imitation learning model, 16 of them in
trials with a high number of features (more than seven).

Discussion & Conclusion

We introduced an experimental paradigm to investigate cir-
cumstances in which humans prefer different types of infer-
ence. In a first study, we investigated whether participants
switch between IL-based and IRL-based inference based on
the information content of the demonstrations. Unlike the ob-
servations of Lage et al. (2019) in experiments utilizing similar
tasks, we did not see a prominent use of IL-based inference.
One explanation could be that participants did not gain any
advantage from IL-based inference in the transfer task since
it performs worse on data that differs from the original distri-
bution. However, the results suggest that it might be preferred
in cases of low information content for at least one of the in-
ference types and a high number of features. In the future,
we plan to investigate models of Bayesian inference and other
IL-based inference models by strategically designing trials to
cover the information values for the respective models equally.
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