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Abstract
Language and consequently the ability to transmit
and spread complex information is unique to the hu-
man species. The disruptive event of the introduc-
tion of large language models has shown that the
ability to process language alone leads to incred-
ible abilities and, to some extent, to intelligence.
However, how language is processed in the hu-
man brain remains elusive. Many insights origi-
nate from fMRI studies, as the high spatial reso-
lution of fMRI devices provides valid information
about where things happen. Nevertheless, the lim-
ited temporal resolution prevents us from gaining
a deep understanding on the underlying mecha-
nisms. In this study, we performed combined EEG
and MEG measurements in 29 healthy right-handed
human subjects during the presentation of contin-
uous speech. We compared the evoked potentials
(ERPs and ERFs) for different word types in source
space and sensor space across the whole brain.
We found characteristic spatio-temporal patterns
for different word types (nouns, verbs) especially at
latencies of 300 ms to 1 s. This is further empha-
sized by the fact that we observe these effects in
two pre-defined sub-samples of the data set (explo-
ration and validation sample). We expect this study
to be the starting point for further evaluations of se-
mantic and syntactic processing in the brain.

Keywords: EEG; MEG; ERP; ERF; source space; sen-
sor space; continuous speech; natural language

Introduction
Despite the fact that certain animal species such as
toothed whales have complex communication systems
(Bergler et al., 2019; Janik, 2014), humans are the only
species with complex language which could be used
to express an infinite amount of ideas and information
(Berwick, Friederici, Chomsky, & Bolhuis, 2013). The
fact that language and general intelligence are tightly
linked is emphasized by the fact that already Alan Turing
developed the ”Imitation Game”- a language-based task
to test intelligence of computers (Turing, 1950; Moor,
1976; Piccinini, 2000). Despite the fact that language

might be one key to general intelligence, as proposed by
research on Large Language Models (LLMs) (Bubeck
et al., 2023), language processing in the human brain
is not well understood. Thus, through high-resolution
fMRI measurements we know the main regions of lan-
guage processing in the human brain such as Broca’s
area, Wernicke’s area or the arcuate fasciculus (Goucha
& Friederici, 2015; Friederici, Meyer, & Von Cramon,
2000; Friederici, 2015), however the exact mechanisms
behind language processing in the brain stay elusive.
To further investigate the mechanisms, methods with
higher temporal resolution such as electroencephalog-
raphy (EEG), invasive EEG (Metzger et al., 2020) and
magnetoencephalography (MEG) (Tavabi, Obleser, Do-
bel, & Pantev, 2007) are needed. Recently, in neu-
rolinguistic research, the trend has shifted from pre-
senting repetitively the same single artificial stimuli,
such as single sentences under very controlled con-
ditions (see e.g. (Praamstra & Stegeman, 1993)), to
presenting natural continuous speech such as audio
books (Schilling et al., 2021; Koelbl, Schilling, & Krauss,
2023; Garibyan, Schilling, Boehm, Zankl, & Krauss,
2022; Schüller, Schilling, Krauss, Rampp, & Reichen-
bach, 2023; Schüller, Schilling, Krauss, & Reichenbach,
2024). In the present study, we played the beginning of
two story lines (corresponds to 6.5 chapters) of the Ger-
man science fiction audio book ”Vakuum” from Phillip
P. Peterson to 29 healthy right-handed participants and
performed combined MEG and EEG measurements.
Furthermore, we extracted event-related-fields (ERFs)
and event-related-potentials (ERPs) from the continu-
ous data stream. We found distinct spatio-temporal
patterns for different wordtypes (nouns, verbs). These
findings were consistent across two independent sub-
samples of the dataset, defined before evaluation (ex-
ploration and validation set), analogous to training and
test datasets in Machine Learning (Schilling et al.,
2021).

Data
In this study, 29 participants (15 ♀, average age: 22.8 ±
3 years) listened to the German audio book ”Vakuum”
by Philip P. Peterson (Argon Verlag) split in eight sec-
tions (approx. 50 minutes). All were healthy, right-
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Figure 1: ERFs and ERPs in source space
The figure shows the ERFs as a response to the presentation of nouns (A) and verbs (D). The temporal activity is
drawn as topomaps (nouns: B, C; verbs: E, F). Before evaluation we have split the data into a exploration data set
(B, E) and a validation set (C, F) in order to test if the effects are reproducible observed. G-J: Is the same analysis
as A-F but for the simultaneously recorded EEG data.
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Figure 2: Evoked activity in sensor space
We averaged the activity across two different latency
ranges (300-600 ms and 600-900 ms) and found differ-
ent activity patterns for verb and nouns.

handed native German speakers. The brain activity was
recorded simultaneously using 248 MEG and 64 EEG
channels. The study was approved by the Ethics Com-
mittee of the University Hospital Erlangen (Approval No:
22-361-2, PK). The data were pre-processed identically
for EEG and MEG. We identified and interpolated sen-
sors with poor signal-to-noise ratios, applied a 1-20 Hz
bandpass filter, sampled the data down to 200Hz and
did a further ICA-based filtering step for artefact re-
moval (according to (Koelbl et al., 2023)). Finally, the
data was segmented into intervals from -0.5 s before to
1 s after each word onset. The data was split into ex-
ploration (subjects 1-19) and validation (subjects 20-29)
sets prior to the evaluation, in order to check for consis-
tency. This data splitting is analogous to AI approaches,
where data is split into a training and test data set.

Grand Average ERPs/ERFs were calculated for both
data sets for three latency-intervals: 0.0-0.3 s, 0.3-0.6 s
and 0.6-0.9 s (Figure 1). To assign the respective sig-
nals to brain regions, we performed source localization
using a cortical volume source space and the bound-
ary element model of the template brain fsaverage from
FreeSurfer (https://surfer.nmr.mgh.harvard.edu/). We
first computed the inverse operator using the noise co-
variance matrices from the pre-stimulus intervals and
the previously computed forward solution. Then, by ap-
plying this operator to the average evoked data with
method=”sLORETA”, we generated a volume vector
source estimate (SE). This process is repeated for
both word types and sets and the grand average time-
averaged SEs of the validation set in the middle and last
interval are visualized in Figure 2.

Results
We found clear differences in the ERFs (Fig. 1 A-F)
and the ERPs (Fig. 1 G-L) evoked by the presentation
of nouns compared to verbs. The spatio-temporal ac-
tivity is highly variable for the different word types, but
consistent over the exploration and validation data set
(subsamples of the data defined before the evaluation).
The distinct activity in the right hemisphere (see Fig. 2)
suggests that the differences between word types are
not exclusively caused by different syntactic processing,
but may be due to differences in the phonetic character-
istics of the words or contextual information.

Discussion
By analyzing two independent sub-samples (explo-
ration, validation) of our MEG/EEG data set, we showed
that continuous speech stimuli can be used to iden-
tify different cortical activity patterns related to the pro-
cessing of different word types. To disentangle the ef-
fects caused by semantic, syntactic, and phonetic pro-



cessing in the brain, it is important to further investi-
gate the data with innovative (e.g. AI-based) evalua-
tion techniques (see e.g. (Schilling et al., 2022; Met-
zner, Schilling, & Krauss, 2023; Metzner et al., 2022;
Krauss et al., 2018, 2021)) and to combine the mea-
surements with a solid theoretical background and thus,
to follow the cognitive-computational-neuroscience phi-
losophy (CCN, (Kriegeskorte & Douglas, 2018)) propos-
ing to use biologically plausible AI algorithms as model
for the brain (see also (Schilling, Sedley, et al., 2023;
Schilling, Schaette, et al., 2023; Gerum, Erpenbeck,
Krauss, & Schilling, 2020; Gerum & Schilling, 2021)).
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