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Abstract:

When confronting a new challenge in an unfamiliar and 
puzzling situation, humans can rapidly formulate a hypothesis 
based on limited interactions and come up with a solution 
tailored to the specific problem. However, coming up with a 
quick solution does not guarantee a preferable outcome. It is 
therefore beneficial to study the representations and neural 
circuits underlying human reasoning, not only to inspire the 
development of machines that reason flexibly and quickly like 
humans, but also to understand how human reasoning may be 
impaired in certain circumstances or by certain disorders. Here 
we introduced a framework to discover the representations that 
could lead to reasoning success and failure in humans, and 
explored how these representations can be realized with neural 
circuits. We tested and validated the framework on a human 
dataset (n=220) collected in our lab on a modified version of 
the Abstraction and Reasoning Corpus. We found that our 
Message Passing Graph Neural Network, when taking in 
graphs encoding different relationships and different levels of 
abstraction, can reproduce human solutions. We then mapped 
the space of graph representations that lead to error modes in 
humans to observe the link between topology and functions in 
reasoning. 

     Introduction 

How can humans reason so quickly? Several lines of work 
suggest that humans could rely on inductive bias, or a set 
of assumptions other than the data, to restrict the learning 
space and guide the chosen hypothesis in novel 
circumstances (Baxter, 2000; Spelke & Kinzler, 2007; 
Tenenbaum et al., 2011). Inductive biases are best 
described and characterized as priors in probabilistic 
models of cognition (Griffiths et al., 2010). Priors can be 
represented explicitly with logical formulas and programs 
(Ellis et al., 2023; Lake et al., 2015), and implicitly 
represented in the weights and architectures of 
connectionist networks (Goyal & Bengio, 2022). While there 
are heated debates on which approach is preferable (Do & 
Hasselmo, 2021), graph theory might be a potential bridge 
between explicit representations and connectionist 
networks, bringing interpretability of function to 
connectivity and topology. Graphs were used in a 
probabilistic model to encode structural priors and study 
human learning (Kemp & Tenenbaum, 2008, 2009). On the 
connectionist side, Graph Neural Networks (GNNs), useful 
for learning representations of graphs, are gaining 
popularity and have achieved strong performance in 
algorithmic reasoning tasks such as sorting, searching, 
dynamic programming, pathfinding, and geometry 
(Cappart et al., 2023; Dudzik & Veličković, 2022; Xu et al., 
2020). Furthermore, besides having relational bias 
(Battaglia et al., 2018), Graph Neural Networks have many 
variants implementing other inductive biases in their 
architectures (Zhang et al., 2022), adding to the 
expressivity of this tool. Here we introduced a novel 
framework with GNNs to study the representations and 
circuits underlying inductive bias in humans. 

       Methods 

To demonstrate the applicability of our framework, we will 
leverage a novel behavioral paradigm called CogARC 
(Cognitive Abstraction and Reasoning Corpus), recently 
developed in our lab and inspired by an AI competition 
called ARC (Abstraction and Reasoning Corpus) (Chollet, 
2019). CogARC requires participants to infer a hidden rule 
from 2 to 6 puzzle-solution pairs and apply the rule to a 
novel puzzle by drawing the solutions on an interactive 
interface (Fig 1). CogARC reasoning problems, 75 total, 
are varied in the types and numbers of rules that dictate the 
puzzles and corresponding solutions. Learned rules do not 

carry over across problems. Therefore, CogARC is less 
forgiving to random guessing or brute force methods, 
compared to traditional measures of human reasoning. We 
have a dataset containing mouse clicking patterns of 220 
participants (52.27% male).  

 
Figure 1: Sample tasks in the CogARC taskset where 

humans must draw their solutions after limited exposure to 
example puzzle-solution pairs. The tasks varied in 

reasoning demands. 
We applied our graph framework to this dataset to 
reproduce human generated solutions and study how 
inductive bias in the representation and circuit architecture 
can harm or help reasoning. In our framework, a single 
CogARC puzzle can be converted to multiple graphs at 
different levels of specificity to encode different priors for 
problem solving. At the lowest level of abstraction, a tile in 
the puzzle grid can be a node. Going up the ladder of 
abstraction, a group of tiles, representing an object or a 
shape, can also be a node. The number of tiles can also be 
encoded in the size of the nodes. The edges in a graph can 
encode the relationships between adjacent tiles, nearby 
objects, or groups of objects. Multiple graphs can be 
created to test different hypotheses about the 
representations and relations sufficient and necessary to 
induce a rule (Fig 3b). These graphs will be forwarded to a 
GNN with message passing and fully connected layers (Fig 
2a) and trained with gradient descent to output the 
corresponding solutions. For the message passing step, 
we implemented the Equivariant Graph Convolutional 
Layer (Satorras et al., 2021) to intentionally bias the network 
towards achieving translation, rotation, reflection, and 
permutation equivariance. After the neural network is 
trained on the limited number of training examples 
available (from 2 to 6 puzzle-solution pairs per task), the 
network is given a novel puzzle, and its output solution is 
compared to that of a human solver. 
 

Results 
EGNN exhibits few-shot learning and solves 
symmetry tasks when given adjacent tile graphs. 
 
We found that when given graphs encoding adjacent tiles 
(Fig 2a), our equivariant Graph Neural Network (EGNN) 
can solve 9/75 tasks in the CogARC taskset. The model 
learned with only 2 to 6 puzzle-solution pairs (Fig 2b,c) and 
can generalize when given a novel puzzle (Fig 2d). The 9 
tasks (only 3 are shown, Fig 2d) solved by EGNN all have 
local neighbor rules. We think that in addition to the implicit 
relational bias in the network architecture, the adjacent tile 
graphs gave the network sufficient priors to learn quickly 
and generalize successfully by highlighting the right level 
of abstraction (tile) and relation (adjacency). 



 
Figure 2: a) EGNN are given graphs encoding adjacent 
tiles. b) EGNN are trained with only 2 to 6 examples and 

tested on up to 2 novel puzzles. c) Learning curve 
showing loss over epoch for the 9 tasks EGNN can solve. 

d) 3 example tasks solved. 
 
Changing graph priors allows EGNN to solve a 
complex task and make errors like humans. 
 
To test our theory that the graph priors are essential for rule 
induction, we kept the same circuit architecture, but 
changed the graph representations and implemented our 
model in a more complex task (Fig 3a). We found that 
GNNs can be trained to solve and fail at tasks like humans, 
when taking in different graph representations encoding 
different priors. In our example task (Fig 3a), solving the 
puzzle requires counting the number of connected tiles 
with the same color, and changing the color of the 
connected tiles to green if the count is less than three. The 
most common error by humans (n=16/155) involves 
recoloring all the blue and gray tiles green (first column, 
bottom left of Fig 3c). In this case, we can create an input 
graph where nodes of the same colors, either gray or blue, 
are connected (first column, top left of Fig 3c). Nodes in 
this graph represent the connected tiles of the same color. 
All the nodes are of equal size. Given this prior, the trained 
GNN will mistakenly recolor blue and gray to green, 
irrespective of number of connected tiles like humans (first 
column, bottom left of Fig 3c). Another common error by 
humans (n=16/155) is turning all blue connected tiles to 
green (but not the gray tiles), so again we can create a 
graph where a few of the blue nodes are connected and all 
the nodes are equal in size. This prior will push the neural 
network to the error solution that humans made (Fig 3c, 
second column). The correct solution requires counting the 
number of connected tiles, so we can drop all the edges 
from the graph and add the count information by changing 
the node’s size correspondingly. This allows GNN to solve 
the task (Fig 3c, third column). Thus far, we have only 
considered the graph representations of the novel puzzle, 
but the graphs that GNN saw during training also 
determine how it made errors. We explored this space next. 
 

 
Figure 3:  a) Puzzle-solution pairs for a task with complex 

rule. b) The GNN can be trained with different graph 
priors. c) The trained network given different test graphs 

will produce error and correct solutions like humans. 
Common errors and the correct solution by humans can 

be visualized as graphs. 
 
Exploring the landscape of priors that could lead to 
human errors. 
 
There are many graph priors that can lead to the same 
human-generated errors. Here we mapped the landscape 
of graph priors with EGNN to explore the relationship 
between graph topology and functions. Specifically, from 
the CogARC puzzle-solution pairs (training set), we 
generated training graphs in which nodes are connected 
tiles of the same color, and the connectivity of the graph is 
controlled by a parameter that varies from 0 (not 
connected) to 0.1 (densely connected). We did the same 
for the novel puzzle (test set). We trained EGNN on the 
training graphs, had the network output solutions given 
different novel puzzle graphs, and observed the likelihood 
with which different combinations would lead to human 
solutions. 

 
Figure 4. Connectivity of train versus test graphs and the 
probability of finding human common errors. Connectivity 

is a parameter that varies from 0 to 0.1 (arbitrary unit). 
 
We found that while common error 2 is harder to get to, our 
model can arrive at both errors with densely connected 
graph priors during training, and by not considering 
connectivity when confronting the novel puzzle. It would be 
interesting to test if this observation holds true for humans. 
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