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Abstract 

Perceptual similarity is critical to many aspects of perception 
and cognition, but is poorly characterized for realistic stimuli. 
We examined the perceptual space of natural sounds using a 
similarity judgment task applied to large numbers of natural 
sound textures. Participants judged the similarity of sound 
textures using an odd-one-out task. We then fit a linear 
transform to best predict human similarity judgments from a 
set of candidate representations taken from contemporary 
auditory models (trained convolutional neural networks or a 
standard auditory texture model). We found that the learned 
linear transformations were critical to predicting the human 
judgments, and that intermediate-to-late stages of the trained 
neural networks yielded the highest prediction accuracy of 
human judgments. Surprisingly, only a few dimensions were 
required to reach peak prediction accuracy. This result 
suggests that when comparing randomly chosen natural 
sounds, human similarity is dominated by a small number of 
dimensions. This general result could constrain memory 
errors, category formation, and other cognitive phenomena 
that are dependent on similarity. 
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Introduction 

In perceptual and cognitive science, understanding 
multidimensional mental representations has been a 
longstanding challenge (Roads & Love 2024). One 
bottleneck has been the lack of stimulus computable 
models that can operate on real-world stimuli to 
produce representations useful for downstream tasks. 
This has changed in the current era of deep learning 
where neural networks regularly achieve human-level 
performance on many real-world tasks and have 
become leading candidate models in audition and 
vision. (Kell & McDermott 2019). Here we explored 
whether representations derived from machine learning 
could account for human similarity judgments in the 
domain of audition. We collected a dataset of human 
similarity judgments for sound textures, asking 1) how 
well representations from contemporary auditory 
models (trained convolutional neural networks or a 
standard auditory texture model) can predict these 
human judgments, and 2) how many dimensions are 
needed to account for this perceptual space.   

Methods 

Sound similarity experiment. We conducted a sound 
similarity experiment in which participants performed a 
triplet odd-one-out task (Hebart et al. 2020). On each 
trial, participants (n=213) listened to three sounds and 
chose the odd-one-out, implicitly indicating which pair 
of sounds was the most similar within the triplet. Stimuli 

consisted of 1,080 unique two-second excerpts of 
natural sound textures drawn from a large set of 
YouTube soundtracks (AudioSet) (Gemmeke et al. 
2017). In total, we collected judgments for 38,332 
triplets.  

Similarity modeling. To model human judgments, we 
used a stimulus-computable similarity modeling 
framework (Fig. 1) consisting of three stages.  

 
Figure 1: Similarity modeling framework 
In the encoding stage, the sound waveforms for each 

stimulus within a triplet are passed through an encoding 
model to generate a set of feature vectors. The 
modeling framework is agnostic to the form of this 
encoding model so long as it takes a sound waveform 
as input and generates a feature vector.  

In the transformation stage, feature vectors from the 
encoding stage are transformed into a new feature 
space where the odd-one-out decision can be made. 
While this transformation could be arbitrarily complex 
(e.g., a neural network), we consider only linear 
transformations in the present work.  

In the decision stage, the distance between all pairs 
of stimuli within a triplet is computed in the transformed 
feature space and the odd-one-out is selected as the 
stimulus not contained in the minimum-distance pair. 
We found qualitatively similar results using both cosine 
and Euclidean distance and thus report results 
averaged over both distance metrics.  

To optimize model parameters, we applied a softmin 
to the pairwise distances and quantified the error 
between model choices and human judgments using a 
cross-entropy loss, then updated parameters using 
stochastic gradient descent to minimize the loss. While 
this framework allows for model parameters to be 
optimized at any model stage, we used frozen encoding 
and decision stages and only optimized parameters of 
the transformation stage. 

To provide an upper bound on the best possible 
performance achievable given the variability across 
participants (i.e., the noise ceiling), we additionally 



collected 20 judgments for 180 randomly chosen triplets 
and measured the average consistency of choices for 
each triplet across participants. This yielded a noise 
ceiling of 68.47%. 
Encoding models. We evaluated representations from 
two distinct classes of encoding models: a standard 
sound texture model (McDermott & Simoncelli 2011) 
and convolutional neural network models previously 
shown to effectively predict neural responses to natural 
sounds (Tuckute et al. 2023). Networks were trained to 
perform either word recognition, speaker identification, 
or background sound ("AudioSet") recognition tasks 
individually, or to perform all three tasks simultaneously 
("MultiTask"). As in previous work, we found little effect 
of network architecture and thus present results for a 
single ResNet50 architecture with a cochleagram front 
end (“CochResNet50”).  

Results 

Model performance. The learned linear 
transformations were critical to predicting judgments on 
held-out sounds: an identity transform yielded average 
performance of 43%, whereas the learned transforms 
yielded 51%, averaged across all stages of all models 
(Fig. 2A). The best performing stages of the trained 
neural networks also substantially outperformed the 
texture model. We also observed a strong dependence 
on the task the neural networks were trained on. In 
particular, the late stages of the models trained to 
recognize words and speakers produced worse 
predictions than the late stages of the models trained 
on the AudioSet environmental sound recognition task. 
This latter result is plausibly explained by the fact that 
these tasks require the model to be invariant to 
background noise, which might be achieved by 
throwing out information related to textures. 
Nonetheless, a sizeable gap remained between the 
best model performance and the noise ceiling.  

Low-dimensional projections. For each model, we 
used the representation from the best-performing stage 
from the previous analysis and learned a linear 
projection to a low-dimensional feature space, varying 
the number of dimensions included. We found that all 
models reached their peak performance with a 
surprisingly low number of dimensions (Fig. 2B). To 
assess whether this low-dimensionality was related to 
the amount of human judgments used for training, we 
re-ran the analysis using only half of the human data 
and found that the results were highly similar to that 
using the full data (r=0.99), and only slightly worse in 
absolute terms. This result is surprising in light of 
findings that large numbers of dimensions are needed 
to synthesize perceptually realistic textures (Feather & 

McDermott 2018) and raises the possibility that 
similarity judgments tap into a representation that is 
impoverished relative to that used for discrimination or 
realism judgments. 

Conclusions  

We collected similarity judgments for natural sounds 
and assessed how well representations from auditory 
models could predict these judgments. Linear 
transformations of model representations substantially 
improved performance, but a sizeable gap remained 
between the best model’s performance and the noise 
ceiling, indicating that current models fail to fully capture 
human sound similarity. Finally, we found that peak 
model performance could be achieved with surprisingly 
low-dimensional representations. Future work is 
needed to understand what aspects of perception these 
dimensions capture and what additional dimensions 
must be added to improve human-model alignment and 
close the gap with the noise ceiling. 

Figure 2: A. Model performance after optimizing a 
linear transformation of the representations from each 
model stage. B. Model performance for the best-
performing stage after optimizing a linear projection to 
a low-dimensional feature space. 
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