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Abstract: 

Scene perception is a key function of the human visual brain that 
follows a hierarchical processing stream from low- to mid- to 
high-level features. While the processing of low- and high-level 
features is well-researched, mid-level features and their 
temporal dynamics are still under-investigated, partly due to a 
lack of appropriate stimuli to probe them. To address this gap, 
we used a rendering software to create a rich stimulus set of 
images and short videos of scenes in which persons perform 
different actions. We also obtained the corresponding ground-
truth annotations for five postulated mid-level features 
(reflectance, lighting, world normals, scene depth and skeleton 
position), as well as one low-level feature (edges) and one high-
level feature (action). We collected electroencephalography 
(EEG) data during the presentation of these stimuli and applied 
encoding models to predict the EEG data from the ground-truth 
feature annotations. We observed that the encoding accuracy of 
our mid-level feature annotations peaked between ~100 ms and 
~250 ms after stimulus onset, framed by the low- and high-level 
feature representations. This suggests that the postulated mid-
level features play an intermediary role in the transformation of 
low-level inputs into high-level semantic information, providing 
insight into their place in the scene processing hierarchy.  
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Introduction 

Humans come to interact with the world by processing 
scene information of their immediate surroundings, starting 
from low-level features of objects (e.g., edges) and 
culminating with high-level semantic features (e.g., actions) 
(Groen et al., 2017). However, the temporal dynamics of the 
computations between low- and high-level features, i.e. the 
mid-level features, are incompletely understood, in part due 
to the lack of appropriate stimuli to probe mid-level 
features. Here, we addressed this challenge by using a 3D 
rendering software to create a stimulus set of naturalistic 
scenes and their ground-truth annotations for visual 
features. We considered five mid-level features based on 
theoretical models of object recognition (Biederman, 1987; 
Marr, 1982) and computer vision literature (Zamir et al., 
2018): reflectance, lighting, world normals, scene depth and 
skeleton position. To frame our results, we further 
considered the low-level feature edges and the high-level 
feature action. Additionally, we created both images and 
short videos (300 ms) to explore the role of stimulus input in 
mid-level feature processing. Using these stimuli, we 
collected EEG data from human participants during stimulus 
presentation. Afterwards, we applied encoding models 
(Kriegeskorte & Douglas, 2019; Naselaris et al., 2011) to 
predict the EEG data from ground-truth feature annotations 
at every time point, thereby revealing the time courses with 
which low-, mid-, and high-level visual features emerge. 

Methods 

Stimulus Set and Data Collection 

We collected EEG data from human participants while they 
performed a target detection task during the viewing of 
scene images (N=15) and 300-ms videos (N=20) from a 
stimulus set that we created in a game engine (Epic Games, 
2019) (Fig. 1). The stimulus set was composed of 1440 
rendered scene images and videos and of ground-truth 
visual feature annotations for every frame, for five mid-level 
features (low- and high-level features were computed 
separately). The stimuli were created by sampling from 3 
characters, 20 rooms, 4 camera angles, and 6 actions. For 
the encoding analyses, the stimuli were split based on the 
rooms into training, test and validation sets, each containing 
respectively 1080, 180 and 180 samples. 

 

Figure 1: Methods. A. Stimulus set: examples of stimuli and 
ground-truth annotations for mid-level features. B. 
Experimental paradigm. 

Encoding Analysis 

To predict the EEG signal from the ground-truth 
annotations, we used linearizing encoding models 
(Kriegeskorte & Douglas, 2019; Naselaris et al., 2011). We 
performed the analysis on subject-level EEG data for each of 
the low-, mid- and high-level features and for images and 
videos separately. First, we trained a multiple linear ridge 



regression model on the training set to predict the EEG 
signal in each of the 19 posterior EEG channels using the 
annotations as predictors, independently for each of the 70 
EEG time points. Then, we estimated the λ hyperparameter 
using the validation set, separately for every subject and 
feature. Afterwards, using the model with the optimized 
hyperparameter values, we predicted the EEG data from the 
test set of annotations. Finally, for every subject and every 
feature, we correlated the predicted EEG data with the true 
EEG data from the test set. Averaging the correlation over 
channels and subjects, we obtained a time-course per 
feature depicting the processing of low-, mid- and high-level 
features in scene images and videos.  

Results 

 

Figure 2: EEG encoding results. Time-courses (left) and peak 
latencies (right) of the annotations-based encoding 
accuracies for images (A), videos (B) and their difference (C). 
 

Mid-level feature representations peaked between low- 
and high-level feature representations Using encoding 
models, we first observed that for both images and videos, 
our ground-truth annotations predicted all low-, mid- and 

high-level features in the EEG data significantly from ~60 ms 
on (p<0.05, FDR-corrected) (Fig. 2A and B, left). This shows 
that our annotations are suitable for predicting the EEG 
data. Second, we observed that mid-level features peaked 
between ~100 ms and ~250 ms after stimulus onset, for both 
images and videos (Fig. 2A and B, right). All investigated mid-
level features except reflectance peaked significantly 
(p<0.05) after the low-level feature, edges (on average, 90 
ms later), and all mid-level features peaked significantly 
before the high-level feature, action (on average, 100 ms 
earlier). This suggests that the selected mid-level features 
play an intermediary role in the transformations between 
low- and high-level features.  

Skeleton position and action peaked earlier in videos We 
observed significant differences between images and videos 
in peak latencies for skeleton position and action (Figure 2C, 
right). Skeleton position and action peaked respectively 40 
ms and 180 ms earlier in videos than in images, suggesting 
that the dynamic changes in videos help resolve biological 
motion faster. 

Discussion 

First, we observed that mid-level features peak between 
~100 ms and ~250 ms after stimulus onset, i.e., between 
low- (~90 ms) and high- (~370 ms) level features. This shows 
that mid-level features as identified by theoretical models 
and computer vision (Biederman, 1987; Marr, 1982; Zamir 
et al., 2018) occupy a place in the middle of scene 
processing. This finding complements previous research on 
the temporal (Grootswagers et al., 2019; Proklova et al., 
2019; Wang et al., 2022) and spatial (Freeman et al., 2013; 
Roe et al., 2012; Tsao et al., 2003) dynamics of other mid-
level features, such as texture, form and shape. Together 
this suggests that the mid-level features proposed by human 
and computer vision models build on low-level features and 
feed into high-level features to result in the successful 
processing of semantic information from a scene.  

Second, we showed that skeleton position and action 
peaked earlier for videos than for images, meaning that the 
movement information in videos aids the processing of 
biological motion. Building on previous psychophysics 
(Johansson, 1973) and computer vision (Girish et al., 2020) 
research, this suggests that the movement contained in 
dynamic stimuli leads to a more efficient recognition of 
action information.  

In sum, we revealed the temporal dynamics of mid-level 
features in static and dynamic stimuli and elucidated the 
role of mid-level features in scene perception.  
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