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feedback mechanisms for learning temporal regularity
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Abstract

Statistical learning (SL) is an unconscious cognitive pro-
cess in which the brain extracts regularities from the en-
vironment through repeated exposure. Because of its im-
plicit nature and potentially high individual variability, SL
posts a major challenge for studying its neural mecha-
nisms. In this work, we investigate the latent brain states
that drive multivoxel patterns of functional neuroimaging
data during the learning of temporal regularity embed-
ded in sequential visual inputs. This approach allows
the latent states to be individual-specific while preserv-
ing meaningful group-level consistency. We found that,
consistently across individuals, a state in the nucleus ac-
cumbens was associated with the perceptual facilitation
effect as the subjects were learning the temporal pattern
implicitly. This state occurred more frequently during ran-
dom sequences than structured sequences, suggesting a
potential error-driven feedback signal for training the in-
ternal prediction. These findings open the door to fur-
ther elucidating network dynamics using the found latent
states as guidance.
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Introduction

Uncovering the neural mechanisms underlying SL is challeng-
ing due to the implicit nature of the learning process. To
achieve the learning goals, the brain engages distributed re-
gions that are related to both domain-general and modality-
specific processing, allowing expectations to be generated
from learned regularities (Conway, 2020; Reber, 2013;
Karuza et al.,, 2013; Thothathiri & Rattinger, 2015; Frost,
Armstrong, Siegelman, & Christiansen, 2015). To capture
brain activities that support the emerging expectations is dif-
ficult with noninvasive neuroimaging methods. On one hand,
learning-induced plasticity produces gradually changing sig-
nals in SL tasks, which the traditionally contrast-based meth-
ods (e.g. general linear models) are not particularly good at
capturing. On the other hand, nonstationarity in task data has
been a standing challenge for network analysis with functional
magnetic resonance imaging (fMRI). Here, we apply hidden
markov models (HMMs) (Baldassano et al., 2017; Bishop,
2006) to study SL-induced plasticity in a set of distributed
brain regions. We explore the latent brain states that drive the
blood-oxygenation-level-dependent (BOLD) activity during the
learning of embedded temporal structures in sequential visual
stimuli. Even though the multivoxel pattern of latent states
may vary among individuals, their presence/absence pattern
during the task can reveal important learning-related process-
ing. Moreover, the HMM framework is not affected by non-
stationarity, and the interdependency of found states among
different brain regions provide a novel way to investigate net-
work interactions.

Methods

Participants Twenty-three adults (mean age = 20.79 years,
SD = 2.89 years, 7 males) participated in this study. All partic-
ipants gave written consent.

Stimuli & procedure Participants viewed sequentially pre-
sented images while responding to target images embedded
in each sequence (Fig. 1). The stimuli in each sequence were
(1) Letters or Pictures and (2) temporally arranged into triplets
("S-block”) or presented in random order ("R-block”) (Fig. 1A).
The target location followed no systematic pattern in each
block either within- or across-participants. Subjects were not
informed of the embedded temporal structure.

MRI data acquisition & preprocessing MRI data were ac-
quired on a Siemens 3T Magnetom Prisma scanner with a
64-channel head coil. Functional images used simultane-
ous multi-slice, T2*-weighted echo-planar scans (TR=800 ms,
TE=32 ms, flip angle=61° FOV=21 cm, matrix=64 x 64, ac-
celeration factor=6, in-plane resolution=2.5 x 2.5 x 2.5 mm?).
Preprocessing steps involved dropping the 4 initial frames, de-
spiking, slice time correction, motion correction, removal of
linear and quadratic trends, and artifact detection based on
movement or deviation in intensity. Because of the subse-
quent autocorrelation and HMM analyses, no smoothing was
applied to avoid distortion in the BOLD time series.
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Figure 1: Behavioral sensitivity to temporal structures in se-
quentially presented visual stimuli. (A) Schematic of task de-
sign. (B) RT shown as median * s.e. across subjects. Black
dots represent individual subject data. ***: Wilcoxon test,
p < 0.001, *: p <0.05.



ROl definition A threshold-free clustering algorithm was ap-
plied to find voxels with high lag-1 autocorrelation in 4 re-
gions: the hippocampal formation (HF), caudate (Caud), NAcc
and V1, under the assumption that persistent responses to
the task would lead to increased lag-1 autocorrelation in the
BOLD signal.

HMM design and inference We hypothesized that the
multi-voxel BOLD time series can be described by a finite set
of latent brain states. Each stimulus in the input sequence cor-
responded to a brain state, and one state transitioned to an-
other following the transition among stimuli. The latent states
were linked to the observed BOLD activity via an emission
probability function (Bishop, 2006), which was set to a mul-
tivariate Gaussian distribution with dimensions matching the
number of voxels in the ROIl. The hidden states were es-
timated using the standard Baum-Welch algorithm (Bishop,
2006). We systematically varied the total number of states in
each region and chose the number that led to the best model
fitting under Akaike information criterion.
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Figure 2: Violin plots of cross-trial median RT when a particu-
lar state was present/absent during target presentation. Scat-
tered dots represent individual data. (A) RT associated with
the most frequent state. ***: surviving 1000 permutation tests.
(B) RT associated with all the other states, presented as mean
across states.

Results

Behavior Subjects completed the task with an average hit
rate of 97.4 * 4.7% (cross-subject median * s.d.), false-alarm
rate of 0.2 * 0.2%, and reaction time (RT) of 446 + 52 ms.
Comparisons of RT between S- and R-blocks showed a facil-
itation effect of structured sequences on target detection. For
both types of stimuli, RT was significantly lower in S-blocks
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Figure 3: Violin plots of the fraction of trials when the target-
associated state occurred during the presentation of struc-
tured or random stimuli. Scattered dots represent individual
data. ***: surviving 1000 permutation tests.

than in R-blocks (Fig. 1B; Letter: Wilcoxon signed-rank W =
23.0, p < 0.00028; Picture: W =71.0, p < 0.024).

Brain states during target presentation In each subject
and each ROI, we located the brain state that occurred the
most frequently during target presentation (referred to as “crit-
ical state” hereafter). We calculated the median RT across
trials separately for when the critical state was present and
when it was absent. The cross-subject mean of trial-averaged
RT was significantly lower when the critical state was present
in the NAcc than when the state was absent (observed dif-
ference greater than 1000 out of 1000 state-permuted trials)
(Fig. 2A). We did not observe such difference in RT with the
other ROls (Fig. 2A). The presence/absence of any other sin-
gle state did not differentiate the trials by RT either (Fig. 2B).

Critical state in S- & R-blocks Across subjects, the NAcc
showed significantly higher (greater than 1000 out of 1000
state-permuted trials) fraction of the critical state in R-blocks
than in S-blocks. We did not observe this S/R contrast with
the other regions (Fig. 3).

Interdependency of brain states between ROIs We tested
whether the state distributions in the HF, Caud and V1 were
contingent on the presence/absence of the critical state in the
NAcc. Caud but not HF or V1 showed significant contingency
(HF: %3 = 7.17,p < 0.200; Caud: %3 = 11.34, p < 0.00228;
V1: xi =5.77, p < 0.651; Bonferroni corrected for three com-
parisons).

Discussion

The fact that the critical state consistently differentiated RT
across individuals was strong evidence that NAcc activity was
closely related to learning. Moreover, the more frequent oc-
currence of the critical state during R-blocks than S-blocks
could be due to error-driven feedback loops between the NAcc
and other brain regions. The current work will naturally extend
to further exploring network dynamics using these brain states
as guidance.
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