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Abstract

Recent research has used large language models (LLMs)
to study the neural basis of naturalistic language pro-
cessing in the human brain. LLMs have grown in com-
plexity, leading to improved language processing capa-
bilities. Here, we utilized several families of transformer-
based LLMs to investigate the relationship between
model size and their ability to capture linguistic infor-
mation in the brain. Crucially, a subset of LLMs were
trained on a fixed training set, enabling us to dissoci-
ate model size from architecture and training set size.
We used electrocorticography (ECoG) to measure neu-
ral activity in epilepsy patients while they listened to a
30-minute naturalistic audio story. We fit electrode-wise
encoding models using contextual embeddings extracted
from each hidden layer of the LLMs to predict word-level
neural signals. In line with prior work, we found that
larger LLMs better capture the structure of natural lan-
guage and better predict neural activity. We also found
a log-linear relationship where the encoding performance
peaks in relatively earlier layers as model size increases.

Keywords: language comprehension; LLM; ECoG; speech

Introduction

Research on the neural basis of natural language processing
has shifted from a modular perspective linking distinct neu-
ral regions with specific language features (Friederici, 2011;
Saxe, Brett, & Kanwisher, 2006) toward a more unified ap-
proach driven by the emergence of large language models
(LLMs). In this new paradigm, artificial neural networks serve
as explicit models of neural computations and representations
supporting high-level cognitive functions (Hasson, Nastase, &
Goldstein, 2020; Richards et al., 2019). The internal repre-
sentations of LLMs better predict human brain activity during
natural language processing than any prior generation of mod-
els (Caucheteux & King, 2022; Goldstein et al., 2022; Kumar
et al., 2022; Schrimpf et al., 2021).

LLMs rely on vast numbers of parameters and extensive
diet training data, allowing them to encode diverse linguistic
structures in high-dimensional embedding spaces (Linzen &
Baroni, 2021; Manning, Clark, Hewitt, Khandelwal, & Levy,
2020; Piantadosi, 2023). Recent work suggests that model
size—the number of learnable parameters—is critical: spe-
cific linguistic competencies emerge only in larger LLMs
(Bommasani et al., 2021; Kaplan et al., 2020; Manning et al.,
2020; C. Zhang, Bengio, Hardt, Recht, & Vinyals, 2021). This
observation that simply scaling up LLMs yields more human-
like language behavior led us to assess the relationship be-
tween the size of LLMs and their ability to predict human brain
activity during natural language comprehension. In keeping
with prior work using fMRI (Antonello, Vaidya, & Huth, 2024),
we hypothesized that larger LLMs that more accurately cap-
ture linguistic structure would better capture neural activity.

We used electrocorticography (ECoG) to measure brain ac-
tivity while participants listened to a naturalistic story stimulus.

We calculated perplexity—the average level of surprise or un-
certainty the model attributes to a word sequence—for mul-
tiple families of transformer-based LLMs. We extracted con-
textual embeddings from each hidden layer of all LLMs and
fit electrode-wise encoding models to predict neural activity
for each word in the stimulus. First, we replicated the finding
that larger LLMs better predicted neural activity (Antonello et
al., 2024). We then focused on the GPT-Neo family of mod-
els, which span a broad range of sizes and are trained on
the same text corpora, to more thoroughly explore the rela-
tionships between model size and how well the embeddings
predict neural activity.

Results

To investigate scaling effects between model size and align-
ment with brain activity, we utilized four families of transformer-
based LLMs: GPT-2, GPT-Neo, OPT, and Llama 2 (Gao et al.,
2020; Radford et al., 2019; Touvron et al., 2023; S. Zhang
et al., 2023). These models span 82 million (M) to 70 bil-
lion (B) parameters and 12 to 80 layers. Each model fam-
ily varies in architecture and training corpora. To control for
these confounding variables, we also focused on the GPT-
Neo family (Gao et al., 2020) with a comprehensive range
of models that vary only in size, spanning from 125 M to
20 B parameters. For simplicity, we renamed the four mod-
els as “SMALL’ (gpt-neo-125M), “MEDIUM” (gpt-neo-1.3B),
“LARGE” (gpt-neo-2.7B), and “XL” (gpt-neox-20b).

We collected ECoG data from ten epilepsy patients listen-
ing to a 30-minute audio podcast (Chavis, 2017). We ex-
tracted the high-frequency broadband power for each elec-
trode in 200 ms epochs at lags ranging from -2 s to +2 s rel-
ative to each word onset. Using the podcast transcript, we
computed perplexity values for all LLMs. Consistent with prior
research (Radford et al., 2019), we found that perplexity de-
creases as model size increases (Fig. 1A). Next, we extracted
contextual embeddings from each hidden layer, utilizing the
full context length of each LLM. Then, we used ridge regres-
sion to constructed electrode-wise encoding models that pre-
dict neural activity from the contextual embeddings for each
word in the stimulus. We evaluated the encoding models us-
ing 10-fold cross-validation and calculated the Pearson cor-
relation between predicted and actual neural signals. We re-
peated this analysis for each lag from -2 s to 2 s in 25 ms
increments relative to word onset.

Larger LLMs better predict brain activity

To assess how well LLMs at different sizes predict neural ac-
tivity, we obtained the maximum encoding performance (cor-
relation) for each electrode across all lags and layers, then
averaged these correlations across electrodes to derive the
overall encoding performance for each model (Fig. 1B). We
replicated previous fMRI work (Antonello et al., 2024) report-
ing a log-linear relationship between model size and encoding
performance, indicating that larger models better predict neu-
ral activity. We also observed an earlier plateau in encoding
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Figure 1: Encoding varies with model size. (A) Perplexity decreases with increase (log) model size. (B) Predictions of brain
activity improve with increasing (log) model size. (C). The XL model better predicts brain activity than the SMALL model for most
language regions. (D) Encoding performance peaks at relatively earlier layers (in percentage of overall depth) for larger/deeper
models. (E) Best-performing layer (in percentage) for SMALL and XL. (F) Best-performing layer among the first half of layers in

XL.

performance, occurring at smaller model sizes (13 B) com-
pared to previous studies (30 B).

To dissociate between model size and other confounding
variables, we focused on the GPT-Neo models and assessed
encoding performance for each region of interest (ROI). We
identified five ROIs across the language network: middle
superior temporal gyrus (mSTG), anterior superior temporal
gyrus (aSTG), Brodmann area 44 (BA44) and Brodmann area
45 (BA45) in inferior frontal cortex, and the temporal pole (TP).
Consistent with prior studies (Goldstein et al., 2022), our en-
coding models achieved the highest correlations in mSTG and
BA45. Furthermore, encoding performance for the XL model
significantly surpassed SMALL in mSTG, aSTG, BA44, and
BA45 (Fig. 1C).

Encoding peaks at earlier layers in larger LLMs

Next, we examined which layer in each model provides the
best encoding performance. To that end, we identified the best
layer for each electrode based on its maximum encoding per-
formance. To account for the variation in depth across models,
we computed the best layer as the percentage of each model's
overall depth. We found a log-linear relationship such that as
models increase in size, peak encoding performance tends to
occur in relatively earlier layers, being closer to the input in
larger models (Fig. 1D). This was consistent across multiple
model families.

We further observed variations in how the best-performing
layers mapped onto the cortical language processing hierar-
chy (Fig. 1E). In the SMALL model, peak encoding was ob-
served for earlier layers in STG electrodes and for later layers

in IFG; in the XL model, the majority of electrodes exhibited
peak encoding in the first 25% of all layers (Fig. 1E). How-
ever, despite the XL model showing less variance in the best
layer distributions across cortex, we found the same hierar-
chy present for the first half of the layers in the model (Fig.
1F). In this analysis, we observed that the best relative layer
nominally increases from mSTG (M = 21.916, SD = 10.556)
to aSTG (M = 29.720, SD = 17.979) to BA45 (M = 30.157, SD
= 16.039) and TP (M = 31.061, SD = 16.305), and finally to
BA44 (M = 36.962, SD = 13.140).

Discussion

In this study, we investigated how encoding models of neu-
ral activity scale with LLM model size. Corroborating prior
work using fMRI (Antonello et al., 2024), we found that larger
LLMs, ranging from 82 M to 70 B parameters, are better
aligned with neural activity. Combined with the observation
that larger LLMs produce lower perplexity, our findings sug-
gest that larger LLMs’ capacity for learning natural language
structure yields better brain activity predictions. Our investi-
gation into the best layers for encoding correlation revealed
a log-linear relationship where peak encoding performance
tends to occur in earlier layers as model size increases. More-
over, we observed variations in best relative layers across dif-
ferent brain regions, corresponding to a language processing
hierarchy. These findings indicate that as LLMs increase in
size, the later layers of the model may contain representations
that are increasingly divergent from the brain during natural
language comprehension.
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