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Abstract
Mixed selectivity, with neurons responding to diverse
combinations of task-relevant variables, has been pro-
posed as a key mechanism to enable flexible behavior
and cognition. However, it is debated whether neural
population responses in prefrontal cortex are better de-
scribed as random mixed-selective or as non-random,
that is, in terms of multiple subpopulations with stereo-
typical response profiles. Here, we show that neural ac-
tivity in macaque prefrontal cortex during a working mem-
ory task is organized into subpopulations that provide a
comprehensive description of the low-dimensional pop-
ulation dynamics. Using demixed-PCA and model-free
clustering, we find that stimulus identity, task condition
and elapsed time are encoded in the population activity
with a significant degree of clustering, incompatible with
random mixed selectivity. Examining the contribution of
stimulus-selective neurons to task condition-related vari-
ance reveals two contrasting activity profiles that corre-
spond to functionally different populations, one respond-
ing during visual stimulation and the other one during
memory maintenance. Finally, the observed neural ge-
ometry explains how stable task and stimulus information
can be read out from the population response. Our re-
sults highlight that despite the heterogeneity of prefrontal
responses during working memory, neurons do not repre-
sent random mixtures of task features but are structured
according to neural subpopulations.
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Encoding of task variables in PFC
We used demixed-PCA (Kobak et al., 2016) to understand
how different task variables (cue stimulus, task condition, and
elapsed time) are represented in the PFC population activity
during working memory and visual tasks (Markowitz, Curtis,
& Pesaran, 2015) (Fig. 1). As has been observed previously,
two stable stimulus components reflect the two-dimensional
task geometry, yielding a stable representation of the x and y
coordinates of the visual cues (Fig. 1b). The neural activity

along the task dPC shows that the neural representation dur-
ing the memory and visual conditions diverges at cue offset
when both experimental conditions become distinguishable.
The three non-selective time dPCs reflect firing rate changes
during the cue period and ramping activity before the cue and
during the delay. Together, these six most-variance-explaining
dPCs account for 43.9 % of the variance.

Figure 1: Encoding of task variables in PFC. a, Task design,
with memory trials (0.3 s cue period and 1.2 s delay) and vi-
sual trials in which the cue is presented the whole trial. b,
Time-course of the demixed PCs. The data were projected
onto the respective dPCA decoder axis, so that there are 16
lines (8 cue locations and 2 task conditions).

Non-random population structure
We found that individual neurons express these task-related
features in a structured manner. We measured the distribution
of selectivity to task variables with the elliptical Projection An-



Figure 2: Neuronal activity modes in PFC are supported by
distinct neuronal populations. a, The ePAIRS test compares
the distribution of angular distances α between nearest neigh-
bors (left panel) to a null distribution. Right: A lower mean α

of the data is indicative of significant clustering. b, Distribution
of stimulus and task selectivity. Left: the degree of mixed se-
lectivity specifies an angle φ in the task-stimulus plane. Right:
data and null distributions. Note the null distribution is not flat
because we combine the two orthogonal stimulus dimensions.

gle Index of Response Similarity test (ePAIRS; (Raposo, Kauf-
man, & Churchland, 2014; Hirokawa, Vaughan, Masset, Ott,
& Kepecs, 2019)). This measure compares the distribution of
angular distances between neurons, given by their contribu-
tion to different task variables (dPC weights), to a null distribu-
tion generated by bootstrapping from a multivariate distribu-
tion with the same covariance (Fig. 2a). The test robustly in-
dicates that neuronal selectivity to stimulus identity, task con-
dition, and elapsed time is non-randomly distributed across
the prefrontal neurons (p < 10−9 for taking between 6 and 20
PCs, the latter explaining 67.4 % of the variance). To gain a
more detailed insight into the population structure, we mea-
sured the degree of mixing between selectivity for stimulus
identity and task condition among the neurons. We computed
the distribution of angle φ, which is 0° for purely task-selective
and 90° for purely stimulus-selecive neurons (Fig. 2b). We
observe fewer mixed neurons (with angles φ around 45°) than
would be expected by chance. Consequently, neuronal selec-
tivities for stimulus and task are distributed (mixed) in a non-
random, structured manner.

Geometry of population activity

Next, we show that a subpopulation of cue and one of mem-
ory neurons are crucial for understanding the low-dimensional
neural representation and decoding. We selected 156 neu-
rons that show structured mixed (distributed) selectivity for

Figure 3: Structure of population activity. a, Average firing
rates of neurons classified by their dPCA weights of the task
component. Solid lines indicate preferred and dashed lines
non-preferred cues. b, Geometry of the neural representation
at the end of the delay for memory and visual trials (red and
blue circles) and representative trajectories for one cue, ob-
tained from demixed-PCA (Fig. 1b). c, Decoding of cue and
task information from the population activity (N = 650 neurons)
using a linear SVM decoder. d, Decoding of task condition
from different neuronal groups (each cue and memory: N =
78, other: N = 494 neurons).

stimulus and task condition (Fig. 2b) and divided them in two
groups according to the sign of their weight on the task dPC.
The average firing rates of these populations shows how the
selectivity for task and stimulus is distributed among the pre-
frontal neurons (Fig. 3a). Cue neurons respond during stim-
ulus presentation (during the cue period in the memory task
and until the end of the trial in the visual task) and they re-
duce activity during the delay in the memory task. In contrast,
memory neurons sustain the stimulus during the delay in the
memory task and show only weak activation during the visual
task. The presence of cue and memory neurons helps to
understand the neural trajectories in a 3-dimensional space,
spanned by the 2 stimulus-related dPCs and the task dPC
(Fig. 3b). These low-dimensional trajectories capture the es-
sential task dynamics: at the beginning, all stimulus and task
conditions are equivalent; when the cue is presented, trajec-
tories split according to cue location along the stimulus axes,
and finally, at the moment when the cue is removed in the
memory task, the trajectories corresponding to different tasks
diverge along the task-relevant dimension (Fig. 3b). The ge-
ometry of the neural representation suggests that a single de-
coder should be able to read out the cue information for both



tasks. Indeed, a decoder trained on both memory and visual
trials achieves the same decoding performance as two sepa-
rate decoders for each task (Fig. 3c). The separate decoders,
on the other hand, do not generalize to the other task which
is explained by the contrasting activity profiles of the cue and
memory neurons. Finally, the task condition can be reliably
decoded from the activity of either the cue or the memory neu-
rons, which are task-selective but not from all the remaining
neurons (Fig. 3d).

Conclusion
We have shown that in macaque prefrontal cortex stimulus
and task information during working memory is encoded in a
distributed, non-random way in neural populations with differ-
ent response profiles. Our results suggest that cortical popu-
lations responses in basic working memory tasks may share
the same organization principles across primates and rodents
(Yang, Tipparaju, Chen, & Li, 2022).
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