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Abstract
Cognitive maps represent the location of different spa-
tial cues relative to environmental boundaries. Map-like
neural representations in the hippocampus are partic-
ularly sensitive to boundary changes, which highlights
how cognitive maps can facilitate flexible learning in
dynamically changing environments. Notably, cognitive
maps in the hippocampus and medial prefrontal cor-
tex (mPFC) also represent abstract knowledge. Yet it’s
unclear whether map-like knowledge representations in
these regions are sensitive to boundary changes in ab-
stract spaces. Here, we use a memory-guided decision-
making task to test whether the human hippocampus and
mPFC flexibly learn abstract boundary changes in dis-
tinct two-dimensional(2D) decision spaces. Despite be-
ing unnecessary to accurately make decisions, partici-
pants conserve a 2D map-like representation of abstract
boundaries after the task, where the precision of their
representation relates to prior choice accuracy. Addi-
tionally, we find that mPFC and hippocampus represent
the euclidean distance to the relevant boundary during
decision-making. Testing whether there are brain regions
sensitive to changes to the limits of the decision space,
we observe flexible hippocampal representation of ab-
stract boundaries that relates to choice accuracy. Taken
together, these results highlight the importance of hip-
pocampal boundary representations in facilitating flex-
ible knowledge retrieval across diverse spatial and ab-
stract contexts.
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Introduction
Environmental boundaries are known to exert a notable in-
fluence on spatial cognition across species (Poulter, Hartley,
& Lever, 2018). In particular, the hippocampal formation dy-
namically represents the geometrical features of an environ-
ment, which facilitates flexible contextual processing (Lever,
Burton, Jeewajee, O’Keefe, & Burgess, 2009; Wills, Lever,
Cacucci, Burgess, & O’Keefe, 2005) in the service of spatial
memory formation (Bellmund et al., 2020; Julian & Doeller,
2021; Steemers et al., 2016). Notably, hippocampal cogni-
tive maps are thought to extend more generally to episodic
memory (O’Keefe & Dostrovsky, 1971), putatively serving as
a format for flexibly representing abstract knowledge (Schiller
et al., 2015; Kaplan, Schuck, & Doeller, 2017; Whittington,
McCaffary, Bakermans, & Behrens, 2022) The theoretical im-
portance of cognitive maps in flexibly coding abstract knowl-
edge raises the possibility that learning abstract boundaries
supports map-like knowledge representations.

Addressing whether learning abstract boundaries is pro-
cessed by the human hippocampal-prefrontal circuit in a sim-
ilar way as physical borders, we developed a two alternative
forced-choice(2AFC) fMRI task where participants made sim-
ilarity judgements on either price or freshness levels of vari-
ous fruits and vegetables (Figure 1A). Unbeknownst to partic-

ipants, the continuous price and freshness levels for each pro-
duce good formed two-dimensional(2D) abstract spaces, with
four of the goods placed at the extreme coordinates(boundary
goods), one good fixed near the center(landmark good), and
sixteen cued goods that were located within the boundaries.
In the 2AFC, participants saw a produce good and decided
whether it was more similar in price or freshness to either the
landmark good or the most proximal boundary good(in 2D Eu-
clidean distance). Crucially, the boundary produce goods had
two distinct sets of coordinates depending on which run they
were featured, where each run was defined by one of two dis-
tinct abstract spaces(square shape and distorted shape). In
contrast, the landmark coordinates were consistent in the two
spaces(Figure 1A, bottom left).

Figure 1: A. Encoding phase: Encoding of boundary and land-
mark goods attributes. Decision phase: In a two alternative
forced-choice task, participants needed to choose whether a
given good is ”more similar” in price or freshness to a bound-
ary or to the landmark good. Bottom Left: Coordinates of
boundary goods in the two abstract spaces forming square
and distorted shapes. Bottom Right: Post-task drag-and-rate.
Participants were presented with a blank map and asked to
place the goods seen during the task according to the posi-
tion they most strongly associated with that particular good.



Results and Discussion

Using the drag-and-rate after scanning (Kriegeskorte & Mur,
2012), we tested whether participants retained a 2D repre-
sentation of one of the decision spaces. Participants con-
sistently organized boundary goods in the correct order(each
boundary good shared a side with its neighboring boundary
good), surpassing chance expectations(p< .001). Conduct-
ing a Monte Carlo simulation to determine the likelihood of
all cued goods falling within the shapes, we found that they
were positioned within the boundaries of the abstract space
significantly above chance level(p< .001). This outcome high-
lights that the boundaries delimited the placement of observed
products within the abstract space. Moreover, post-task fMRI
debriefing indicated that none of the participants were aware
that the goods formed any kind of 2D space. Next, we asked
whether the precision during the placement was related to
performance during the 2AFC. We then correlated the Pro-
crustes distance from each original space with performance
on task, and found when participants better reconstructed the
original distorted shape, they consequently achieved greater
task performance(ρ=-0.42, p=.026). However, this relation-
ship was not found when participants needed to reconstruct
the square shape (ρ=-0.08, p=.70).

We investigated whether the similarity of neural represen-
tations of the goods in the abstract spaces were modulated
by the 2D Euclidean distance to the landmark good and the
most proximal boundary good. We observed a significant
effect of 2D Euclidean distance to the closest boundary in
our bilateral hippocampus (t(25)=2.60, p=.015) and mPFC
masks(t(25)=2.39, p=.024), suggesting that sharing similar
Euclidean distance from the boundary is a significant predictor
of neural similarity across products. Conversely, we didn’t ob-
serve any significant effect of Euclidean distance of the prod-
ucts to the landmark good in mPFC(t(25) = 0.62, p=.54) or the
hippocampus(t(25)= 0.50, p=.62).

Asking whether the hippocampus and mPFC flexibly rep-
resented abstract spaces consisting of the same goods with
different boundary coordinates(price and freshness values),
we tested whether boundary-defined contextual identity(the
shape of abstract spaces) was decodable from hippocam-
pal and mPFC signals. We conducted multivariate pattern
analysis(MVPA) on encoding phase boundary good trials to
test whether the patterns elicited during encoding trials in
the square shape were distinguishable from trials in the dis-
torted shape(i.e., same visual stimuli in both abstract spaces).
We used a linear support vector machine(SVM), and ap-
plied a leave-one-subject-out cross-validation procedure to
test whether the classifier could decode the shape of the ab-
stract space above chance. In other words, we used hip-
pocampal and mPFC fMRI data to classify whether an en-
coding trial for a boundary good belonged to a run that was
either in a square or distorted shaped context. The classi-
fier yielded significant results in the hippocampus(p=.02, ac-
curacy:60%), but not in the mPFC(p=.29, accuracy:53%). We
tested the abstract shape classifier on the landmark good

trials and observed no significant effect in the hippocam-
pus(p=.47, accuracy:51%), suggesting that the hippocam-
pal classification effect was specific to the representation of
boundary goods. Classifier accuracy didn’t correlate with gen-
eral task performance(ρ=0.22, p=.30). Relating the difference
in task performance in the distorted versus square shape to
the hippocampal classifier bias, we observed a significant
correlation with classifier accuracy(ρ=0.47,p=.022). This re-
sult means that classifier accuracy was highest in the hip-
pocampus for participants that performed better in the dis-
torted shape compared to the square shape. Taken together,
our data provide important clues on how the hippocampus
can guide decision making across diverse spatial and abstract
contexts.
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Figure 2: A. Participants’ average placement of boundary
goods in the drag-and-rate. B. Correlation between choice ac-
curacy and drag-and-rate task precision. Plot displays corre-
lation between Procrustes distance of 29 participants’ recon-
struction from the original distorted shape with overall accu-
racy on task. C. Beta coefficients of RSA GLM in hippocam-
pus and mPFC. The bar plots show beta coefficients result-
ing from the GLM for each predictor; every participant (N=26)
is an individual dot. Error bars represent SEM. Left: Signifi-
cant bilateral hippocampal effect of euclidean distance to the
closest boundary; Right: Significant mPFC effect of euclidean
distance to the closest boundary. D.Hippocampal classifier
results after one thousand permutations with mean accuracy
50% (chance level, indicated by red dashed line). Bold purple
line indicates observed hippocampal classifier accuracy. E.
Correlation between difference in task performance and hip-
pocampal classifier accuracy (N=24). Positive differences in-
dicate higher performance in distorted versus square shape.
Asterisks showing significant differences: *= p< .05.
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