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The sound structures that convey meaning in speech 

such as phonemes and words vary widely in their 
duration. As a consequence, integrating across absolute 
time (e.g., 100 ms) and sound structure (e.g., phonemes) 
reflect fundamentally distinct neural computations. 
Auditory and cognitive model have often cast neural 
integration in terms of time and structure, respectively, 
but whether neural computations in the auditory cortex 
reflect time or structure remains unknown. To answer 
this question, we rescaled the duration of all speech 
structures using time stretching/compression and 
measured integration windows using a new paradigm, 
effective in nonlinear systems. Our approach revealed a 
clear transition from time- to structure-yoked 
computation across the layers of a popular deep neural 
network model trained to recognize structure from 
natural speech. When applied to spatiotemporally 
precise intracranial recordings from the human auditory 
cortex, we observed significantly longer integration 
windows for stretched vs. compressed speech, but this 
lengthening was very small (~5%) relative to the change 
in structure durations, even in non-primary regions 
strongly implicated in speech-specific processing. 
These findings demonstrate that time-yoked 

computations dominate throughout the human auditory 
cortex, placing strong constraints on 
neurocomputational models of structure processing. 
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Natural sounds are composed of hierarchically 
organized structures that span many temporal scales, 
such as phonemes, syllables, and words in speech 
(Hickok & Poeppel, 2007) and notes, contours, and 
melodies in music (Patel, 2007). Importantly, the 
duration of these structures is highly variable (House, 
1961) (Fig 1A), and thus there is a fundamental 
distinction between integrating across absolute time 
(e.g., 100 milliseconds, time-yoked integration) vs. 
sound structure (e.g., a phoneme, structure-yoked 
integration). If a neural population were to integrate 
across a structure such as a phoneme or word – or 
sequences of phonemes and words – then the effective 
integration time would necessarily vary with the 
duration of those structures. Auditory models have 
typically assumed that neural integration is tied to 



absolute cortical timescales  (Chi et al., 2005; Dau et 
al., 1997; Khatami & Escabí, 2020; Nelson & Carney, 
2004), whereas cognitive and psycholinguistic models 
have often assumed that information integration is tied 
to abstract structures such as phonemes or words 
(Brodbeck et al., 2018; Caucheteux et al., 2023; Norris 
& McQueen, 2008; Temperley, 2007). Distinguishing 
between time- and structure-yoked integration is 
therefore important for relating auditory and cognitive 
models, building more accurate neurocomputational 
models of auditory processing, and interpreting findings 
from the prior literature.  

In this project, we tested whether neural integration in 
the human auditory cortex reflects time or structure. 
Integration windows are often defined as the time 
window within which stimuli alter a neural response and 
outside of which stimuli have little effect (Theunissen & 
Miller, 1995). We measured integration windows using 
a recently developed paradigm, in which 
sound segments are surrounded by 
different “context” segments (the temporal 
context invariance or TCI paradigm) 
(Norman-Haignere et al., 2022) (Fig 1B). If 
the integration window is less than the 
segment duration, there will be a moment 
when it is fully contained within each 
segment and thus unaffected by 
surrounding context. We can therefore 
estimate the integration window as the 
smallest segment yielding a context-
invariant response. Our approach does not 
depend on any assumptions about the 
features that underlie the response or the 
nature of the stimulus-response mapping 
(e.g., linearity), and thus is broadly 
applicable to nonlinear systems. 

We tested whether neural integration 
windows varied with the duration of speech 
structures by stretching and compressing 
speech (preserving pitch) so as to rescale 
the duration of all structures (Fig 1C). A 
structure-yoked integration window should 
thus rescale with the magnitude of 
stretching/compression, irrespective of the 
particular structures that underlie the 
window (Fig 1C, right panel), while a time-
yoked window should be invariant to 
stretching/compression (Fig 1C, left panel). 

TCI paradigm effectively distinguishes 
time- vs. structure-yoked integration in 
DNN models. To test the efficacy of our approach, we 
first applied it to a popular deep neural network (DNN) 
model (DeepSpeech2), trained to recognize speech 
from a spectrogram representation of sound (Amodei et 
al., 2016; Keshishian et al., 2021) (Fig 1D-E). Task-

trained DNNs have shown strong predictive power in 
sensory  cortices, and have replicated important 
aspects of hierarchical functional organization (Kell et 
al., 2018; Kriegeskorte, 2015; Yamins et al., 2014), and 
thus provide a useful testbed for evaluating new 
methods and generating hypotheses for neural 
experiments (Kell & McDermott, 2019; Skrill & Norman-
Haignere, 2023). The DNN model used here was only 
ever trained on natural speech (Keshishian et al., 2021). 

We measured integration windows for each unit of the 
DNN model, after stretching and compressing speech 

by √3 (a factor that preserves the intelligibility in human 

listeners), producing a 3-fold difference in structure 
durations (Fig 1D). We found that integration windows 
in early DNN layers were narrow and similar for 
stretched and compressed speech, while integration 
windows in late layers were much longer and increased 
substantially with stretching. We computed a structure-

yoking index by measuring the difference in integration 
windows on a logarithmic scale between stretched and 
compressed speech, divided by the difference in 
structure durations (Fig 1E). We observed a clear 
transition from time- to structure-yoked integration 
across DNN layers, that was completely absent from an 

Figure 1. A, Duration histogram for several phonemes across a large corpus 
(LibriSpeech), illustrating their variability. B, Illustration of the temporal context 
invariance (TCI) paradigm. The same speech segment (in blue) is surrounded 
by its natural context (left) and randomly selected alternative segments (right). 
Context segments can only alter the response if the integration window is 
larger than the segment duration. C, Compression/stretching rescales the 
duration of all speech structures and will therefore compress/stretch the 
integration window if it reflects structure (purple, right) and not time (green, 
left). D, Integration window of DNN units for stretched and compressed 
speech. Purple line shows the difference in structure durations on a 
logarithmic scale; green is the line of unity. E, Distribution of structure-yoking 
indices across all units from each layer of a trained and untrained DNN model. 
F, Integration windows in the human auditory cortex for stretched and 
compressed speech. Electrodes are colored based on distance to primary 
auditory cortex (inset).  



untrained model, demonstrating that it was learned from 
the durational variability of natural speech. 

Neural integration throughout human auditory 
cortex is predominantly time-yoked. We next tested 
whether a similar transition to structure-yoked 
computation would be evident in the human auditory 
cortex (Fig 1F). We used our TCI paradigm to measure 
integration windows from throughout the human 
auditory cortex from patients undergoing intracranial 
monitoring for epilepsy (112 sound-responsive 
electrodes, 16 patients, broadband gamma power 
response: 70-140 Hz). We used the cortical surface 
distance of each electrode from primary auditory cortex 
(TE1.1) as a measure of its hierarchical position within 
the auditory cortex (Norman-Haignere et al., 2022) 
(inset of Fig 1F).  

We found that the overall integration window, 
averaged across stretched and compressed speech, 
increased substantially across the cortical hierarchy 
replicating prior work (Norman-Haignere et al., 2022) 
(median integration for the annular ROIs: 75, 130, and 
266 ms). We also observed a significant increase in 
integration windows for stretched compared with 
compressed speech (𝐹1,112 = 12.265, 𝑝 < 0.001, 𝛽 =
0.10). The magnitude of this increase (0.061 octaves), 

however, was very small relative to the three-fold 
difference (1.58-octaves) in speech structure durations, 
yielding a structure-yoking index of only 0.04. Structure-
yoking was similarly weak throughout the auditory 
cortex (Fig 1F). 

These findings indicate that the primary unit of 
integration in the auditory cortex is absolute time and 
not structure duration, even in non-primary regions 
strongly implicated in speech-specific processing 
(Mesgarani et al., 2014; Norman-Haignere et al., 2015; 
Overath et al., 2015). How can people recognize 
speech structures using time-yoked integration 
windows, given their large durational variability (Fig 
1A)? One possibility is that integration windows in non-
primary auditory cortex are sufficiently long to achieve 
recognition of the relevant sound structures, even if 
yoked to absolute time, potentially analogous to higher-
order regions of visual cortex that have large spatial 
receptive fields, sufficient to recognize objects across 
many spatial scales (Gross et al., 1969). Structure-
yoked computations may also be instantiated in 
downstream regions (e.g., superior temporal sulcus) 
that integrate across longer, multi-second timescales 
(Lerner et al., 2011), either by enhancing weak 
structure-yoked computations already present in the 
auditory cortex or by explicitly aligning their 
computations to speech structures and structural 
boundaries (Graves et al., 2006; Norris & McQueen, 
2008). The scientific findings from our study and the 

approach developed for distinguishing time- and 
structure-yoked integration will be useful in answering 
these questions in future research.  
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