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Abstract 
Learning from the past requires assigning credit to the 
consequences of our actions. Here, we explored human 
credit assignment strategies by asking people to select 
activities with short- and long-term pain-related 
consequences for an avatar and predict the avatar’s 
subsequent pain level. Human behavioral results suggest 
that, while participants can learn short-term 
consequences, their learning of long-term consequences 
depends critically on how they sequence activities in 
time. More specifically, increased repetition in activity 
selection (i.e., perseveration) is related to a learned 
preference for activities that reduce long-term, but not 
short-term, pain. Additionally, in comparing several 
computational models, we found that standard model-
free algorithms (i.e., temporal difference learning) best 
explained the behavior of participants who did not 
perseverate, whereas Bayesian inference models that 
take into account the causal structure of the environment 
better explained those that did. Our results demonstrate 
that credit assignment critically depends on the order in 
which actions are selected, with repetitions aiding the 
learning of long-term consequences. This raises the 
possibility of perseveration as a useful action policy to 
improve long-term credit assignment. 
Keywords: credit assignment; perseveration; pain; temporal 
difference learning; Bayesian causal inference 

Introduction & Methods 
In order to update future behavior, it is essential to learn 
whether a past action or event led to a good or bad 
outcome and assign credit accordingly (Sutton, 1984). 
For instance, if you feel worse than usual today, it is 
worth determining which actions (e.g., insufficient 
sleep, not eating breakfast) may have contributed to 
that state in order to improve choices in the future. 
However, assigning credit is a notoriously difficult 
problem for both humans (Gureckis & Love, 2009; 
Colaizzi et al., 2020) and animals (Robinson & Flagel, 
2009) alike, especially when we want to consider the 
longer-term consequences of our actions given the lack 
of a clear temporal linkage between action and state in 
this case. 

In the present study, we investigated how people 
assign credit to activities with immediate versus lasting 
consequences. To do so, we utilized two paradigms – a 
“Prediction Task” and an “Assessment Task” (Fig. 1a). 
During the Prediction Task, online participants (n=300) 
must choose between 4 different activities for an avatar 
to engage in and then predict the avatar’s “pain level” 
after engaging in the selected activity.  Whereby 
activities can have either short- (S) or long-term (L) 
consequences on the avatar’s pain level (increase or 
decrease; see activities matrix Fig 1c). Participants then 
receive feedback about the avatar’s actual pain level, 
which is displayed alongside their previous prediction 
on the next trial to reduce memory load (Fig 1a).  

Activities impact the avatar’s pain either by directly 
affecting the observed reported pain level (x) or by 
affecting the underlying mean pain (μ), which is stored 
across trials and affects x on each (Fig 1b). If the current 
activity has a short-term effect, SA(t), it will directly 
impact x on the current trial, such that xt = μt + SA(t). In 
contrast, long-term effects on pain, LA(t), are 
implemented via a change in the underlying mean pain 
level (μ) on the next trial, such that μt+1 = μt + LA(t) (Fig 
1b). Thus, long-term consequences of activities have a 
delayed and persistent impact on pain, whereas short-
term consequences are immediate and transient (Fig 
1c). After participants learn the short- and long-term 
consequences of activities via trial-and-error during the 
Prediction Task, we test their learned preferences for 
these activities in a two-alternative choice Assessment 
Task where they are instructed to choose the activity 
that will most minimize pain (Fig 1a). No feedback was 
given in the Assessment Task. 

 
Figure 1: a) Task design b) Generative model for 
how pain is updated, with a sampling statement 

(bottom left) and transition function (top right) c) Left: 
activities matrix mapping activities to their associated 
effects; right: descriptive plots of short- and long-term 

effects of activities 

Behavioral Results 
In a previous CCN paper (Bruinsma, Petzschner, & 
Nassar, 2023), we demonstrated how experimental 
manipulation of the ordering of activities in the 
Prediction Task had significant effects on participants’ 
learning of short- and long-term consequences. 
Specifically, we showed  that participants failed to learn 
long-term consequences unless activities were 
repeated multiple times in a row. In the present study, 
we gave participants the option to select activities (Fig 
1a) to explore whether individual differences in activity 
selection patterns are directly related to improved 
learning of short- and long-term consequences.  



 

 

In order to quantify participants’ selection patterns, 
we utilized a metric called repeat frequency (RF). A 
participant with a low RF would be more likely to switch 
to a new activity, whereas a high RF participant would 
be more likely to repeat activities back-to-back. When 
correlating participants’ RF in the Prediction Task (PT) 
with their performance in the Assessment Task (AT) 
(i.e., likelihood of choosing the pain-reducing short- or 
long-term activity) (Fig 2a), we find that RF explains 
much of the individual learning differences in our task. 
Specifically, greater repetition of activities (i.e., higher 
RF) resulted in a significantly better understanding of 
long-term consequences, while activity switching (i.e., 
lower RF) led to a worse understanding. We also 
identified a weaker but still significant opposite pattern 
for short-term activities, suggesting that there may be a 
trade-off between learning short- versus long-term 
consequences dependent on how individuals sequence 
activities in time (Fig 2a). Additionally, a trial-to-trial 
linear regression on the impact of different factors in 
their ability to predict an avatar’s pain level in the PT 
shows a similar trend, where high RF individuals (as 
determined by a median split) are significantly more 
responsive to long-term activities than low RF 
individuals (Fig 2c). It is important to note, however, that 
participants tend to misattribute long-term effects to the 
current, rather than previous, activity (Fig 2c), 
suggesting that they are not fully identifying the causal 
structure and timing of long-term effects (see Fig 1b,c). 

Lastly, in order to assess whether enhanced learning 
from different activity sequences is specific to those 
who actively explored the space or can generalize, we 
presented a yoked group of participants (n=150) with a   
predetermined sequence of activities matched to the 
original participant’s sequences (n=150) and saw 
similar short- and long-term learning trends (Fig 2b,c).       

Computational Modeling 
In order to understand the potential computations 
underlying participant behavior, we fit standard model-
free algorithms (temporal difference (TD) learning with 
and without memory (TD-3)) and models accounting for 
the causal structure of the environment (Bayesian 
causal inference over possible activities matrices) to the 
participants’ PT behavior. A Bayesian model selection 
based on the Bayesian Information Criterion showed 
that a 3-step TD model is best able to capture low RF 
participants, while high RF participants are better 
explained by a Bayesian inference model (Fig 2d). 

Further analyses show that TD models are incapable 
of proper learning of long-term effects, while a Bayesian 
inference model shows optimal learning of short- and 
long-term effects but vastly outperforms participants. 
This makes sense given that long-term effects do not 
affect the state (formulated here as the activity) and TD 

only learns through future states. Thus, since long-term 
effects are not related to the future state (i.e., next 
activity), TD models struggle to learn them.  In contrast, 
the Bayesian inference model has knowledge of the 
structure of the environment (i.e., the activities matrix; 
Fig 1C), although it must perform inference over 
hundreds of thousands of activities matrices to infer the 
correct values. Nonetheless, none of our models can 
fully explain participant behavior across different activity 
sequences and, thus, our next step is to develop 
variants of these models that better account for these 
unique constraints on human credit assignment. 

 
Figure 2: a, b) Correlation of RF in the prediction task 
(x-axis) with assessment task performance (y-axis) for 
short- (orange) and long-term (blue) activities, where 

dots are individual participants c) Linear regression on 
factors (x-axis) predicting participants’ pain predictions 
in the PT (y-axis) d) Model likelihoods given by BMS 

Discussion 
Overall, our results demonstrate that 1) there is a high 
amount of variability between individuals in how they 
explore and sequence their actions, and 2) that these 
sequencing differences lead to major differences in how 
people learn and assign credit, where greater 
perseveration (i.e., action repetition) aids the learning of 
long-term consequences. While perseveration is often 
regarded as a faulty policy utilizing a minimally complex 
model, our results challenge this notion and suggest 
that perseveration might actually be a useful form of 
structured exploration that allows participants to get a 
handle on the long-term consequences of actions. We 
intend to explore the real-world implications of these 
results, specifically in the domain of pain where we will 
assess whether the ability to learn the long-term 
consequences of activities on pain can predict the risk 
of individuals to develop chronic pain.  
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