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Abstract
Convolutional neural networks (CNNs) are currently the
strongest overall predictors of human neural and behav-
ioral responses to object stimuli. However, CNNs are
typically much more susceptible than humans to image
perturbations such as occlusion. Here, we investigated
how augmenting training datasets might lead to more
occlusion-robust CNNs that better predict human visual
behavior. To address this question, we trained sepa-
rate instances of the same CNN architecture (CORnet-
S) to classify the ImageNet 1k dataset either a) without
augmentation, b) with occlusion by artificially generated
shapes without texture, c) with occlusion by naturalis-
tic shapes derived from photographs, also without tex-
ture, and d) with occlusion by naturalistic shapes with
original textures preserved. After training, we used an
occluded object stimulus set from a human behavioral
study to measure classification accuracy and predictiv-
ity of human responses for each model. Compared to the
standard dataset, we found that both artificial and nat-
ural occlusion-training led to increased accuracy, how-
ever, only natural occlusion training led to greater human-
likeness, with separate benefits of naturalistic shape and
texture. Overall, these findings indicate that human oc-
clusion robustness may be shaped by the specific forms
of occlusion that occur in nature.
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Introduction
Over the last decade, advances in computer vision have had
a substantial impact on how human object perception and
associated cortical regions are investigated and understood.
Deep, image-computable architectures such as convolutional
neural networks (CNNs) and, more recently, transformer mod-
els have scored highly on visual tasks such as object classifi-
cation, in some cases approaching human-level performance
(He, Zhang, Ren, & Sun, 2016; Naseer et al., 2021). Subse-
quent computational neuroscience studies revealed that the
intermediate representations in convolutional models strongly
predict neural responses in primate visual cortices to the
same images (Güçlü & a. J. van Gerven, 2015; Khaligh-
Razavi & Kriegeskorte, 2014; Schrimpf et al., 2018), suggest-
ing a high level of correspondence between CNNs and the
brain. However, when assessed using images distorted by
noise, blur or occlusion, CNNs typically perform much worse
than humans (Geirhos et al., 2018; Jang, McCormack, &
Tong, 2021), suggesting that they lack the perceptual mecha-
nisms that afford visual robustness in humans.

Object occlusion is a relatively under-investigated image
perturbation for which there is a striking human-machine ro-
bustness gap. Despite obscuring objects causing a partial
or spatially fragmented view of an object, Human observers
can often readily perceive and recognize objects despite be-
ing partially obscured by other objects. By contrast, covering
just 50% of an image with randomly positioned black patches

is sufficient to reduce classification accuracy by a CNN to
drop from approximately 75% to less than 1% (Naseer et
al., 2021). Previous studies have shown that recurrent pro-
cessing can partially account for the human advantage, as
disrupting recurrent processing in humans leads to weaker
occlusion robustness, while augmenting feedforward mod-
els with recurrent processing improves robustness and corre-
spondence with human neural responses (Tang et al., 2018;
Rajaei, Mohsenzadeh, Ebrahimpour, & Khaligh-Razavi, 2019;
Svanera, Morgan, Petro, & Muckli, 2021). However, it is less
clear how differences in the visual diet of humans and CNNs
might also account for the occlusion robustness gap. For in-
stance, CNNs are typically trained on databases constructed
by scraping photographs of objects from the internet which,
while naturalistic, generally consist of clearer, higher-quality
views than those experienced by a human during develop-
ment. The occlusion robustness gap may therefore be a prod-
uct of the distribution of the training data.

In the present study, we explored how augmenting train-
ing datasets with greater levels and various forms of occlu-
sion may lead to more occlusion-robust CNNs that better pre-
dict human visual behavior. We found that, while any form of
occlusion-training led to increased robustness, only natural-
istic forms of occlusion led to more human-like classification
behavior. Moreover, this effect was partially reduced, but sur-
vived the removal of the natural occluder image texture during
training. Taken together, these results indicate that human oc-
clusion robustness mechanisms emerge from both the quan-
tity and quality of occlusion that occurs in the natural world.

Methods/Results

Human Behavior

We presented 30 human subjects with 752 images from eight
different object categories (Figure 1A). Images were taken
from ImageNet (Deng et al., 2010) and converted to grayscale.
Each image was presented without occlusion or with a unique
occluding shape superimposed over the object. Nine different
types of occluder were used, eight of which were computer
generated and one of which was based on the photographs of
objects. Occluders had a uniform texture, either black or white,
and revealed between 10% and 80% of the object image. The
pairing of object images and occluders was randomized for
each subject. Each image was presented to human subjects
at 10 degrees visual angle for 100ms before being replaced by
a pink Fourier noise pattern. The subject then made an 8 AFC
classification response. Classification accuracy as a function
of visibility is shown for each occluder type and color in Figure
1B.

Computational Modeling

We trained four CORnet-S architectures (Kubilius et al., 2018)
to classify ImageNet 1k with the following augmentations to
the dataset: no augmentation; occlusion by uniformly colored
computer-generated shapes; occlusion by uniformly colored
shapes derived from natural object images; occlusion by natu-



Figure 1: Stimuli and human behavioral results. A: Example
stimulus from each condition. B: Group mean classification
accuracy for each occluder type, color and visibility. White
and black occluders shown in lighter and darker colors, re-
spectively. White circle shows performance for unoccluded
images. Colored curves are sigmoid functions fitted the accu-
racy data. Dotted line shows chance performance.

ral objects with original textures intact. After training, we input
images from the behavioral experiment into the models and
measured classification accuracy. All occlusion-trained mod-
els showed greater accuracy than the model trained on the
standard ImageNet dataset (Figure 2A). To directly compare
each model with humans, we correlated the set of mean ac-
curacies across the different occlusion conditions (Figure 2B).
Compared to the standard dataset, training on artificial oc-
cluders did not significantly affect human likeness (t(29)=1.07,
corrected p=1). However, training on natural occluder shapes
with artificial textures led to higher human likeness than both
standard training (t(29)=4.87, corrected p=.0002) and artifi-
cial occlusion training (t(29)=7.04, corrected p=.0001). Fi-
nally, the combination of natural occluder shapes with natu-
ral textures led to higher human-likeness than natural shapes
alone (t(29)=9.03, corrected p=.0001).These results suggest
that augmented occlusion training can lead to the acquisition
of more robust human-like representations, but only if the oc-
cluding stimuli resemble the shape and textural properties of
natural images.

Discussion

We found that training only on naturalistic forms of occlu-
sion increased led to more human-like performance in CNNs.
This indicates that increasing the quantity of occlusion dur-
ing training does not guarantee more human-like occlusion-

Figure 2: Computational modeling results. A: Mean classifi-
cation accuracy for all occluded images (bar) and for each oc-
cluder type/color (colored dots, mapping shown in Figure 1).
B: Human-likeness of each CNN, measured as the correlation
between the set of colored points shown in A. Correlation was
performed separately for each subject, with violin plot showing
the distribution of coefficients. White dot and bar height show
mean across subjects; errorbars show SEM across subjects.
Noise ceiling is shown as the grey bar.

robust models. Instead, more qualitative aspects of real-world
occlusion appear to influence human occlusion robustness.
Specifically, both the shape and texture of naturalistic oc-
cluder shapes were independently advantageous in produc-
ing human-like patterns of behavior. This finding adds to pre-
vious research on the human-machine occlusion robustness
gap, which has identified recurrent processing mechanisms
as a critical feature that affords more accurate classification
and/or more better predictions of human behavioral or neural
responses to occluded images (Rajaei et al., 2019; Tang et
al., 2018).

Even our most human-like model accounted for only half of
the explainable variance in the human data. Given that the
CNN used here already contains recurrent connections, this
indicates that other factors are needed to account for human
occlusion robustness - an exciting target for future modeling.

While different data augmentation led to different test accu-
racies, these differences are confounded by different degrees
of similarity in the forms of occlusion applied during training
and testing. Indeed, this factor strongly predicts the pattern
of model accuracies. Further testing of these models on an
out of distribution occluder dataset is necessaru to establish
whether there are reliable differences in robustness across
these models.

In summary, we present evidence that the robust perception
of occluded objects in humans is shaped by the specific forms
of occlusion that appear in the natural world.
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