Representational subspaces with different levels of abstraction in transformers
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Abstract

A widespread assumption in analyzing the representa-
tions of artificial neural networks (ANNs) and the brain
is that neurons in the same ANN layer or cortical region
have a shared level of abstraction. In this work, by ana-
lyzing the learned LayerNorm weights across a range of
transformer networks, we find evidence for distinct sub-
spaces in the network dimensions. In an in-depth analy-
sis for a single vision transformer, we find three represen-
tational subspaces within each layer that can be identified
by LayerNorm weights. In comparisons to human fMRI
representations, we find distinct properties of these sub-
spaces with two of the subspaces demonstrating higher
representational similarity to early and late regions of the
cortical visual hierarchy. These findings show that anal-
yses of hierarchical feature processing in ANNs need to
consider the role of subspaces with distinct representa-
tional properties.
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Introduction

In both the brain and ANNSs, a foundational principle is that
successive layers of feedforward processing correspond to the
conversion of low-level sensory features into abstract high-
level features (DiCarlo, Zoccolan, & Rust, 2012). Further-
more, a widespread assumption in analyzing ANNs is that
representations in the same ANN layer have a shared level
of abstraction (Yamins et al., 2014). Modern transformer-
based neural networks (Vaswani et al., 2017; Dosovitskiy et
al., 2020), however, have a flexible system design which does
not include an explicit inductive bias for hierarchical feature
processing in successive layers (as is the case in widely stud-
ied convolutional neural networks). Here we examine whether
the representations of vision transformers diverge from the
conventional hierarchy of representational abstraction.

Results

Analysis of Network Representations We used the learned
weights from the layer normalization components in vision and

language transformer models as a tool to analyze the proper-
ties of representations within individual network layers (Fig.
1). Layer normalization standardizes the input embeddings
and applies learnable weight and bias vectors across all di-
mensions. Notably, these weight vectors are shared across
tokens and can be used as a tool to investigate shared prop-
erties across network dimensions.

We found that in early layers of highly trained transformer
models, a considerable portion of the network’s dimensions
effectively ignore or "squash” the input by having near-zero
layer normalization weights. This was especially prominent
in more complex models like ViT-CLIP for vision and Llama-
2 for language, where around 45% and 97% of dimensions
respectively were effectively squashed in early layers.
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Figure 1: Distribution of LayerNorm weights reveal near-zero
incorporation of network inputs for considerable portions of
network dimensions in early layers of highly trained trans-
former networks. A. LayerNorm has learnable weights, w,
used for analysis. B. LayerNorm weight distributions for vision
transformer networks with pre-normalization. C. LayerNorm
weight distributions per layer in vision (Dinov2) and language
models (GPT2, Llama-2). Dotted lines denote D percentile at
5% of maximum LayerNorm weight.

Functional Roles of Dimensions Taking a closer look at
the ViT-CLIP vision model, we identified three distinct clusters
of dimensions based on their properties (Fig. 2):

* Position-Dominated: These dimensions were heavily influ-
enced by the positional embeddings rather than the actual
image input.
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Figure 2: For ViT-CLIP, network dimensions with distinct properties have distinct representational similarity to early and late
processing regions of interest in fMRI responses to natural images. A. Network dimensions can be divided into clusters that are
Position-Dominated, Input-Dominated, and Input-Squashed, which are investigated separately for representational similarity with
linear centered kernel alignment in B-C. B. Representational similarity across layers in the ViT-CLIP network with centered kernel
alignment to patched image inputs as well as fMRI responses to early visual cortex and occipital temporal cortex. C. Maximum

CKA scores across layers for additional regions of interest.

* Input-Squashed: These dimensions effectively ignored the
input via near-zero normalization weights. Their similarity
to the image inputs drastically decreased after the first layer
and remained low in subsequent layers.

Input-Dominated: The remaining dimensions were primarily
driven by the image input embeddings. These dimensions
started with high similarity to the image inputs, and this sim-
ilarity gradually decreased across layers. This aligns with
the typical hierarchical processing of visual features.

Relationship to Brain Representations We next analyzed
how these clusters of dimensions mapped onto brain repre-
sentations from fMRI data of humans viewing natural images,
and observed distinct patterns of representational similarity to
low- and higher-level regions of visual cortex. We use the
Deepduice codebase (Conwell, Prince, Kay, Alvarez, & Kon-
kle, 2023) to perform representational similarity analysis with
linear centered kernel alignment (CKA) (Kornblith, Norouzi,
Lee, & Hinton, 2019) on flattened network embeddings to the
image inputs of the network and to the fMRI stimulus evoked
responses of a representative subject of the natural scenes
dataset (Allen et al., 2022). Most strikingly, we found that
the position-dominated dimensions were highly similar to EVC
and had a relatively lower similarity to OTC. We also found that
the Input-Squashed dimensions had a slightly higher similarity
to OTC relative to the Input-Dominated dimensions, consistent
with the interpretation of these Input-Squashed dimensions as
encoding more abstract scene information.

Discussion

Our results reveal that within the same network layer, there
can be distinct subspaces of dimensions that encode differ-
ent levels of visual abstraction in parallel. This challenges the
common assumption that all units within a layer operate at the
same level of the representational abstraction.

The presence of distinct subspaces based on near-zero
LayerNorm weights was observed in multiple transformers.

This suggests it may be a general computational strategy of
modern neural networks that should be accounted for when
analyzing the inner workings of these models and their rela-
tionship to the brain.
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