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Abstract:

Sensory areas of the mammalian cortex possess a
regular six-layer motif, often interpreted functionally in
terms of a canonical microcircuit and computation.
Many have proposed that this canonical computation
could be a form of predictive coding, but previous
experiments have sometimes failed to deconfound
prediction error as such from other possible causes for
neural response dynamics, such as stimulus specific
adaptation. We recorded spiking and local field
potentials from seven areas in nine (N=9) mice as they
passively viewed visual sequences with varying
contextual cues and sequence structures.
Current-source density analysis in mouse visual area
rostrolateral (RL) showed distinct patterns when
oddball stimuli were dissociated into stimulus specific
adaptation, global oddballs, and deviance detection.
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Introduction

A wide variety of behavioral evidence suggests that
the neocortex implements a probabilistic internal
model of the sensorimotor environment (McNamee &
Wolpert, 2019). The cortex also appears, at a gross
level, to consist of canonical microcircuits (Douglas et
al., 1989), suggesting that each six-layer column of
the repeating circuit implements a canonical
computation. Theorists have suggested that this
canonical computation may take the form of Bayesian
prediction, either in the form of predictive coding
(Bastos et al., 2012; Friston & Kiebel, 2009; Rao &
Ballard, 1999; Srinivasan et al., 1982) or predictive

routing (Bastos et al., 2020). While the experimental
literature contains abundant evidence for a form of
temporally “local” predictive coding, in which the
decoded “prediction error” arises from a change in
stimulus, this “local oddball” paradigm conflates the
possible causes of such a neural signal (Gabhart et
al., 2023). These can include stimulus-specific
adaptation of selectively responsive neurons
performing a purely feedforward computation,
detection of stimulus deviance from a repeated
sequence, or a general prediction error.

Our experiment sought to disentangle these
possible sources of variation in spiking activity and
local field potentials. We recorded in six visual areas in
mice across contexts (uncued or cued surprises, local
and global oddball stimuli) and found that
stimulus-selective adaptation, local deviance, and
global oddball processing generated distinguishably
different patterns of neural response.

Methods

We recorded spiking and local field potentials from
six (6) visual cortical areas and one thalamic area in
mice (n=9) using six (6) Neuropixels probes; Figure 1
shows the experimental design used and a cortical
hierarchy taken from (Harris et al., 2019). Prior to
recording sessions, mice were habituated for 5-10
sessions to a specific sequence of visual stimuli
containing a local oddball. We write the local oddball
blocks xxxY, using X/x vs Y/y for stimulus identity,
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lowercase letters x for fully deterministic stimuli, and
capital letters Y for randomized stimuli. During
recording, mice passively observed the habituated
local oddball (LO, xxxY) sequence, intermixed with
global oddball sequences (GO, xxxX, 20% of trials).
Following the main block, two control blocks were
presented. The first was a selectivity control block in
which each stimulus of a sequence was
pseud-randomly presented (B2 in Fig. 1). The second
was an adaptation control block in which the stimulus
sequence xxxx alternated with yyyy (B3 in Fig. 1).

Per-trial local field potential data was averaged
across animals and trials within each condition, with
grand sample means and (corrected) sample standard
variances being calculated relative to a sample-size in
trials. Current-source density (CSD) analysis was
performed after grand-averages within conditions, but
before statistical comparison, using the standard CSD
method included in the Elephant package for
electrophysiology analysis (Yegenoglu et al., 2018).
CSD results are shown in nano-amperes per
millimeter squared (nA/mm2). A two-tailed Welch’s
t-test for a difference of means in normal distributions
was used to locate statistically significant (p < 0.05)
differences between the condition means.

Figure 1: Six visual cortical areas were recorded as
mice were presented with a main block of local and
global oddball sequences, followed by control blocks.

Results

We measured three cross-condition contrasts in
CSD: stimulus-specific adaptation (SSA, xxxY vs yyyy
in control block B2), deviance detection (DD, XXXY in
the random control block B2 vs the first 50 trials of
xxxY both during the main block B1), and global
novelty or prediction error (PE, xxxX vs xxxx). We
subtracted the 3rd stimulus response from the 4th
response to remove the time-in-task confounder.

Figure 2 shows the current-source density analyses
of the contrast responses in the rostrolateral visual
cortex (RL). The top row contrasts xxxY and yyyy
sequences, which reflects stimulus-specific
adaptation; a minor but significant relative sink starts
in L4 and spreads to L2/3 and L5/6 around a relative
source in L4. The middle row shows the contrast
between XXXY and xxxY responses; the former
display a significant current sink in L4 compared to
xxxY trials that spreads to superficial layers with a
delay. The bottom row shows the contrast between
xxxX and xxxx trials; the contrast is not significant
during stimulus processing. The stimulus offset shows
enhanced sinks in L2/3 and L5/6.

Our results show that stimulus-specific adaptation
and deviance detection evoked a FF laminar circuit
response but that global novelty yielded distinct
responses in stimulus processing.

Figure 2: Responses (left) and statistical significance
(right, p<0.05) for oddball relative to third stimulus, in
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Stimulus-Specific Adaptation, Deviance Detection,
and Prediction Error contrasts.

Discussion

This abstract studied cortical responses in a
local/global oddball experiment design to test the
layer-specific encoding of prediction errors. We
studied the current sinks and sources elicited by
stimulus-specific adaptation, deviance detection, and
global novelty. Stimulus specific adaptation showed
the stereotyped current sink spreading from L4
outward after stimulus onset, consistent with a
feedforward (FF) pattern of canonical circuit
activation. Global oddball prediction error showed a
distinct pattern with enhanced current sinks in
superficial and deep layers only after stimulus offset.
Deviance detection showed a current sink that began
later than that for stimulus-specific adaptation in L4
and spread to L2/3 during stimulus presentation,
again reminiscent of a FF pattern.

This argues against a canonical computation for all
types of prediction error and in favor of a specialized
circuitry for different types of prediction error. Ongoing
work is characterizing these computations in cortical
and subcortical structures.
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