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Abstract: 
How do we decide what to do in new situations? One way 
to solve this dilemma is to reuse solutions developed for 
other situations. There is now some evidence that a 
computational process capturing this idea – called 
successor features & generalised policy improvement – 
can account for how humans transfer prior solutions to 
new situations. Here we asked whether a simple 
formulation of this idea could explain human brain 
activity in response to new tasks. Participants completed 
a multi-task learning experiment during fMRI (n=40). The 
experiment included training tasks that participants 
could use to learn about their environment, and test tasks 
to probe their generalisation strategy. Behavioural 
results showed that people learned optimal solutions 
(policies) to the training tasks, and reused them on test 
tasks in a reward-selective manner. Neural results 
showed that optimal solutions from the training tasks 
received prioritised processing during test tasks in 
occipitotemporal cortex and dorsolateral prefrontal 
cortex. These findings suggest that humans evaluate and 
generalise successful past solutions when solving new 
tasks. 
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Introduction 

The ability to flexibly generalise from past experience 
to new situations is central to human intelligence, but 
how humans decide what aspects of their experiences 
to generalise is still a mystery. Recent behavioural 
evidence suggests that humans are capable of reusing 
experiences (Tomov et al., 2021), with a sophisticated 
algorithm called successor features and generalised 
policy improvement (SF&GPI). The main idea is that – 
when a new situation is presented – an agent evaluates 
decision policies that have been successful during 
earlier learning experiences. To perform the evaluation 
and determine a course of action, it uses predictions 
about the task features that succeed each policy 
(Barreto et al. 2017, 2018, 2020). 

If people generalise using SF&GPI, it should be 
possible to detect its components in their brain activity. 
We developed two neural predictions based on this 
premise. First, we predicted that successful past 
policies would be represented in brain activity when 
people are exposed to new tasks. Second, we predicted 
that these policies would be prioritised, showing 
stronger encoding than unsuccessful past policies. 

Paradigm 

To test these predictions, participants completed a 
multi-task learning experiment during fMRI (Fig. 1). On 
each trial, participants saw a cue that determined their 

current task, and then made a choice between four 
options. Our design had two main trial types. Training 
trials involved one set of cues and presented feedback 
after each choice (Fig. 1A). Test tasks – which were 
used to assess participants’ generalisation strategy – 
involved different cues and did not show feedback (Fig 
1B).  

Training and test cues were constructed in a specific 
way to test the SF&GPI algorithm. Across training trials, 
two options lead to high reward and two options lead to 
marginal reward or losses. During the test trials, this 
pattern changed. The two options associated losses or 
marginal reward during training were now the most 
rewarding. Based on this design, an SF&GPI-abiding 
agent was expected to continue choosing the more 
rewarding option among the optimal training policies for 
each test task, but would not enact policies that had 
been unrewarding during training. Participants 
completed six blocks, with 48 training trials and 20 test 
trials per block. 

Figure 1: Gem collector paradigm. On each trial, 
participants needed to retrieve gems to sell for as much 
profit as possible. Different cities around the world had 
different gem numbers and selling prices varied from 
trial-to-trial. Selling prices were used to define 
participants’ task on the current trial. Training trials 
involved one set of selling prices. Generalisation was 
assessed on test tasks that used different selling prices.  

Behavioural Results 

We first examined how often participants made the 
optimal choice on training trials. The proportion of 
optimal choices was significantly above chance 
(M=0.83, SD=0.06, chance=0.25, t(37)=56.16, 



corrected p<0.001) indicating that participants acquired 
the optimal training policies. On test tasks, we found 
participants continued using optimal policies from 
training (Mproportion=0.69, SD=0.16, chance=0.5, 
t(37)=7.44, p<0.001), rather than selecting policies that 
offered the highest objective rewards. On test trials 
where participants used either of the two optimal 
training policies, the more rewarding one was also 
selected in most cases (M=0.93, SD=0.05, chance=0.5, 
t(37)=50.74, corrected p<0.001). These results indicate 
that rather than calculating the very best choice, 
participants were choosing among the optimal training 
policies on test trials in a reward-sensitive manner, 
consistent with the predictions of an SF&GPI algorithm. 

Neural Results 

To test the neural predictions of SF&GPI, we trained 
logistic decoders on fMRI data from pre-defined regions 
of interest, to distinguish choice stimuli seen during 
feedback on the training trials. We then applied the 
trained decoders to each measurement timepoint in the 
test trials and extracted decoding probabilities for 
stimuli corresponding the optimal training policies. 

Dorsolateral PFC (DLPFC) was included based on 
research implicating it in policy encoding (Botvinick & 
An, 2008; Fine & Hayden, 2022) and context-
dependent action (Badre & Nee, 2017; Flesch et al., 
2022; Jackson et al., 2021). Medial temporal lobe (MTL) 
and orbitofrontal cortex (OFC) were included based on 
research implicating them in encoding predictive 
information that can be used for policy selection (De 
Cothi & Barry, 2020; Geerts et al. 2020; Muhle-Karbe et 
al., 2023; Stachenfeld et al. 2017; Wimmer & Büchel, 
2019). Occipitotemporal cortex (OTC) was included due 
to its central role in early research using multivariate 
decoding and its inclusion in contemporary decoding 
studies (Haxby et al., 2001; Muhle-Karbe et al., 2023; 
Wittkuhn et al., 2021).   

First, we tested the prediction that the optimal training 
policies would be encoded during test tasks. Neural 
results showed significant above chance decoding of 
the more rewarding training policy during test tasks, in 
OTC and DLPFC (OTC: M=28.07%, SD=2.17, 
t(37)=8.57, corrected p<0.001; DLPFC: M=25.85%, 
SD=1.51, t(37)=3.40, corrected p=0.011, Fig. 2A), but 
not in MTL or OFC (MTL: M=25.17%, SD=1.43, 
t(37)=0.72, corrected p=0.744; OFC: M=25.40%, 
SD=1.37, t(37)=1.79, corrected p=0.405). The ‘more 
rewarding training policy’ refers to the choice option 
(among the optimal training policies) that offered more 
reward on each test task. Second, we tested the 
prediction that the optimal training policies would 
receive prioritised processing during test tasks. 

Consistent with this prediction, average decoding 
evidence during the test tasks was significantly higher 
for the more rewarding training policy than the objective 
best policy (OTC: Mdiff=4.09%, SDdiff=3.69, t(37)=6.75, 
corrected p<0.001; DLPFC: Mdiff=1.61%, SDdiff=2.59, 
t(38)=3.77, corrected p=0.002, Fig. 2B). The magnitude 
of this neural priortisation in OTC was positively 
correlated with how often participants reused the 
optimal training policies during test tasks (OTC: 
Spearman’s Rho=0.431, corrected p=0.014; DLPFC: 
Spearman’s Rho=0.163, corrected p=0.327).  

Figure 2: A) Decoding evidence for the optimal training 
policies during test tasks in each ROI. The dashed line 
indicates chance. B) Neural prioritisation towards the 
optimal training policies in OTC and DLPFC. Higher 
values indicate stronger decoding evidence on test 
tasks for the optimal training policies over the objective 
best policy. A-B) Large circles show sample means and 
small circles show individual participants. *p<0.05. 

Conclusion 

The present study provides behavioural and neural 
evidence that generalisation to new tasks was 
consistent with an SF&GPI-based algorithm. 
Successful past solutions were prioritised as 
candidates for decision making on tasks outside the 
training distribution. This prioritisation provides flexibility 
when faced with new decisions problems and has lower 
computational cost than considering all available 
options. These findings take a step towards illuminating 
the flexible yet efficient nature of human intelligence. 
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