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Abstract 

Leading theories of memory propose that our 
experiences are embedded within slowly drifting 
representations that capture the passage of time 
(temporal context). When events from the past are 
remembered, temporal context representations are 
thought to also be reinstated. Here, using natural 
language processing methods and inverted fMRI 
encoding models, we developed a novel approach 
to directly measure the reinstatement of temporal 
context. Specifically, we show that when a 
previously-encountered stimulus is re-
encountered, activity patterns in ventromedial 
prefrontal cortex reflect the semantic information 
that immediately preceded its original encounter. 
That is, re-encountering a stimulus reinstates 
semantic information that putatively ‘lingered in 
mind’ when the stimulus was originally 
encountered. This constitutes novel evidence of 
temporal context reinstatement and highlights the 
influence of past events on ongoing processing. 
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Introduction 

Central to leading theories and computational models 
of episodic memory is the idea that individual events are 
embedded in a broader “temporal context” (Howard & 
Kahana, 2002; Norman et al., 2001). When a past event 
is retrieved from memory, this is thought to trigger 
reinstatement of the event’s temporal context (Polyn et 
al., 2009; Sederberg et al., 2008). As such, 
remembering an event not only recovers the event 
itself, but also reinstates information related to other 
events that were encoded nearby in time. However, 
methods for directly measuring temporal context 
reinstatement are currently limited. 

One way in which temporal context reinstatement has 
been measured is through reinstatement of neural 
activity patterns. This approach is motivated by the idea 
that temporal context is encoded within distributed, 
drifting patterns of neural activity. Indeed, converging 
evidence from human neuroimaging studies has shown 
that recalling a stimulus not only involves reinstatement 
of neural activity patterns that were initially engaged 
during the encoding of that stimulus, but also 
reinstatement of the activity patterns that preceded the 
encoding of that stimulus (Folkerts et al., 2018; Manning 

et al., 2011; Yaffe et al., 2014). While important, these 
neural activity patterns, on their own, do not indicate the 
nature of the information that is reinstated.  

Here rather than measuring reinstatement of neural 
activity patterns, we developed and used a novel fMRI-
based approach to directly test for reinstatement of 
information that preceded initial encoding of a stimulus. 
Specifically, we used natural language processing 
methods to characterize the content of natural scene 
images and inverted fMRI encoding models to test 
whether repetition of a stimulus reinstated the semantic 
content that preceded the stimulus’ original encounter. 
Thus, temporal context reinstatement was 
operationalized as the degree to which neural patterns 
evoked by a stimulus’ repetition contain information 
about the semantic content that lingered in mind when 
the stimulus was originally encountered. This approach 
allowed us to explicitly test predictions from leading 
theoretical models. 

Methods 

To test our hypothesis, we analyzed data from the 
massive Natural Scenes Dataset (Allen et al., 2022). 
Eight participants performed a continuous recognition 
task in which they viewed thousands of scene images 
that were repeatedly presented across many scan 
sessions, from which the first two encounters of each 
stimulus (E1, E2) were used for the present study. 
Analyses were restricted to E1 and E2 trials that were 
drawn from the same session (but different scan runs) 
and were each associated with correct behavioral 
responses (i.e., E1 = ‘new’ responses, E2 = ‘old’ 
responses) to avoid potential confounds.  

We operationalized the temporal context of E1 as the 
semantic information of the stimulus that immediately 
preceded E1 (i.e., E1-1). The primary goal of our 
analyses was to reconstruct the semantic content of 
stimuli that preceded E1 based on activity patterns 
evoked during E2. To characterize the semantic content 
of scene images, we transformed independent 
annotations (text descriptions) of the scene images into 
512-dimensional semantic embeddings using Google’s 
Universal Sentence Encoder (USE) (Cer et al., 2018). 
We then applied principal component analysis (PCA) on 
the USE semantic embeddings and used the top 20 
PCs as a 20-dimensional representation of the 
semantic content of each scene image. These PC 
scores were used for the inverted encoding model 
described below.  



 

 
Figure 1: Inverted encoding models for reconstructing semantic components of scenes from fMRI activity patterns. 

Reconstructions of semantic components were 
generated using a cross-validation approach (Figure 1). 
Specifically, using ridge regression, we first learned a 
direct linear mapping from the semantic components (of 
E1-1) to fMRI activity patterns evoked during E2. We 
then inverted this encoding model and applied it to held-
out data (leave-one-session-out) in a cross-validated 
manner to reconstruct semantic components. 
Reconstruction accuracy was computed as the cosine 
similarity between the reconstructed and actual 
semantic components. 

Results 

We focused our analyses on three regions of interest 
(ROIs) that we predicted would be sensitive to the 
semantic content within scene images: (1) ventromedial 
prefrontal cortex (vmPFC) which forms high-level 
schemas (Gilboa & Marlatte, 2017), (2) angular gyrus 
(AG) which forms event-specific memory 
representations (Humphreys et al., 2021), and (3) 
lateral occipitotemporal cortex (LOTC) which is 
sensitive to current visual content (Konkle & 
Caramazza, 2013). We first tested whether activity 
patterns at E2 contained information about the current 
stimulus (E2). Consistent with previous studies (Lee & 
Kuhl, 2016; Wang et al., 2023), robust content 
reconstruction was obtained from all ROIs (ps < .001; 
permutation test). 

Of critical interest was whether semantic information 
that preceded E1 (i.e., the semantic embeddings for E1-
1) could be reconstructed from activity patterns elicited 
at E2. Successful reconstruction would indicate that 

participants reinstated the temporal context of E1 when 
E2 was encountered. Strikingly, we found that semantic 
embeddings of E1-1 were successfully reconstructed 
from E2 activity patterns in vmPFC (Figure 2A; p = .035; 
permutation test), with above-chance reconstruction for 
3/8 individual participants (p = .006; binomial test). 
While AG and LOTC showed sensitivity to the content 
of the current stimulus (E2), neither region supported 
reconstruction of E1-1 (Figure 2B-C; ps > .19). 

 
Figure 2: Mean cosine similarity between reconstructed 
and actual semantic components for each ROI. Red 
dashed lines depict actual similarity values. 

Summary 

In this study, we employed inverted semantic encoding 
models to measure temporal context reinstatement. We 
found that, when a stimulus was re-encountered, 
vmPFC supported successful reconstruction of 
information that ‘lingered in mind’ when the stimulus 
was first encountered. This represents novel evidence 
for temporal context reinstatement, specifically 
demonstrating reinstatement of semantic content from 
temporally-adjacent stimuli. 
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