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Abstract
Understanding olfactory processing in insects re-
quires characterizing the complex dynamics and
connectivity of the first olfactory relay - antennal
lobe (AL). We leverage in vivo electrophysiology
to train recurrent neural network (RNN) model of
the locust AL, inferring the underlying connectiv-
ity and temporal dynamics. The RNN comprises
830 projection neurons (PNs) and 300 local neu-
rons (LNs), replicating the locust AL anatomy. The
trained network reveals sparse connectivity, with
different connection densities between LNs and
PNs and no PN-PN connections, consistent with
in vivo data. The learned time constants predict
slower LN dynamics and diverse PN response pat-
terns, with low and high time constants correlat-
ing with early and late odor-evoked activity, as re-
ported in vivo. Our approach demonstrates the util-
ity of biologically-constrained RNNs in inferring cir-
cuit properties from empirical data, providing in-
sights into mechanisms of odor coding in the AL.
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Introduction
Olfactory processing in insects relies on the intricate cir-
cuitry of the antennal lobe (AL) - the first relay of the
olfactory system, where excitatory PNs and inhibitory
LNs interact to shape odor representations. The AL ex-
hibits complex dynamics, with PNs and LNs displaying
diverse and odor-specific temporal response patterns
(Laurent, 2002). Understanding these dynamics is cru-
cial for unraveling the mechanisms underlying odor cod-
ing in insects.

Many existing computational models of the AL rely
on hand-tuned parameters to recreate patterns of activ-
ity observed in vivo (Patel et al., 2009; Bazhenov et al.,
2013, 2001; Chen et al., 2015). While these models pro-
vided many valuable insights, they do not fully leverage
the wealth of available in vivo data to construct the mod-
els. Machine learning approaches, such as recurrent
neural networks (RNNs), offer a powerful alternative to
investigate the AL’s dynamics and generate testable hy-
potheses. RNNs can learn from large sets of empiri-



cal data and capture complex temporal dependencies,
making them well-suited for modeling the intricate dy-
namics of the AL.

In this study, we construct a continuous rate RNN
model of the locust AL to capture the temporal pat-
terns and diverse responses of the AL PNs and LNs.
Our approach allows to train the model parameters
based on empirical data, enabling us to uncover the
key mechanisms that shape odor representations in the
AL. Through this data-driven modeling framework, we
seek to advance our understanding of the computa-
tional principles governing olfactory processing in in-
sects and generate testable predictions for future ex-
perimental studies.

Methods

Experimental data Electrophysiology recordings
were obtained from the AL of 12 locusts exposed to 5
odors. The data were processed to extract spike times
of 69 PNs. The instantaneous firing rates of these PNs
were calculated by binning the spiking data into 100ms
intervals and convolving with Gaussian kernel.
Recurrent Neural Network Model We constructed a
continuous rate RNN model of the AL based on (Kim
et al., 2019). The model (Fig. 1) comprises 830 PNs
and 300 LNs, same as the numbers found in the lo-
cust AL (Laurent, 2002). The temporal dynamics of the
synaptic current for each RNN unit are governed by the
following equation:

τd
dx

dt
= −x+Wrecrrate +Winu ; rrate = ϕ(x) (1)

where τd represents the membrane time constant,
x denotes the synaptic currents, Wrec signifies the re-
current connectivity, Win indicates the input weight be-
tween olfactory receptor neurons (ORNs) and AL neu-
rons, u corresponds to the input from the ORNs, and
ϕ is a non-linear transfer function that determines the
firing rate.

Among the 820 PNs, 69 were trained to replicate the
firing rates of the 69 recorded in vivo PNs. The model
was trained using backpropagation through time (BPTT)
(Mozer, 1995) to minimize the root mean squared er-
ror (rMSE) loss between the firing rates of the RNN
units and their corresponding in vivo PNs. During train-
ing, the input weights Win, recurrent weights Wrec, and
time constants τd were optimized. To maintain biologi-
cal plausibility, Win was constrained to be positive, Wrec

was masked to have separate excitatory and inhibitory
connections (Song et al., 2016) according to Dale’s prin-
ciple (Eccles et al., 1954), and the values for τd were
restricted between 10ms and 1000ms.

Input to model AL

-1 0 1 2 3 4 5 6 7 8 

20

40

60

80

100

M
od

el
 O

R
N

0.02

0.04

0.06

In vivo neural response

-1 0 1 2 3 4 5 6 7 8 

20

40

60

80

100

In
 v

iv
o 

P
N

0

0.2

0.4

0.6

0.8

1

Final model response
56.4146% corr with target

-1 0 1 2 3 4 5 6 7 8 
Time (s)

20

40

60

80

100

M
od

el
 P

N

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
Training epoch

0

50

100

150

200

Lo
ss

 (a
.u

.)

Optimization loss

0 2 4 6 8 
Time (s)

0 2 4 6 8 
Time (s)

In vivo Non-optimized XNN

Loss = ! "!"!# − "$#%&' ( 	
)

Optimized XNN

P
N

fir
in

g 
ra

te
s

A

B

C

D

E

Antennal Lobe
(PNs and LNs)

W_in

W_rec

ORNs

Figure 1: RNN model of the locust AL. (Left) Example
in vivo PN spike train over 5 trials (top) and correspond-
ing firing rates of the biological PN (black) and trained
model unit (blue). Black bar indicates odor stimulation.
(Right) Schematic of the RNN model structure and input
patterns for two odors

Results
Neural activity The trained RNN units closely match
the recorded activity of their corresponding PNs (Fig.
1). Moreover, the remaining RNN units exhibit distinct
temporal dynamics, with some responding at the onset
of odors, some at the offset, and a few at both onset
and offset (Fig. 3), matching experimentally observed
patterns (Saha et al., 2017).

Figure 2: Synaptic weights. (Top) Trained RNN input
weight adjacency matrix. (Bottom) Trained RNN re-
current weights adjacency matrix. Neurons before the
dashed line are the PNs and after are LNs. Weights in
blue are negative and red are positive.

Trained synaptic connectivity The initial connection
probabilities were set to 0.3 for PN-LN, LN-LN, and LN-
PN connections, with PN-PN connections constrained
to 0 throughout training. After training, the connection
probabilities were found to be 0.1 for PN-LN, 0.23 for
LN-PN, and 0.28 for PN-LN (Fig. 2). Even though there
is no direct estimate of connection probabilities from ex-
periments, this is consistent with values predicted by



modeling studies (Patel et al., 2009). Importantly, when
non-zero PN-PN connections were allowed, the train-
ing eliminated the vast majority of them, took longer to
converge, and had a worse fit to data. This matches the
experimental observation of absence of PN-PN connec-
tions (Wilson, 2011).

Figure 3: Time constants. (Left) Trained time constants
for LNs and PNs. (Right) PN activities split by their time
constants. Top shows activities of PNs with low time
constants and bottom shows activities of PNs with high
time constants.

Trained time constants After random initialization
and training, the time constants for both PNs and LNs
exhibited a distribution with mostly low values and a
small number of units with high values (Fig. 3). The
median time constant for LNs was approximately 193ms
(mode=70ms), while for PNs, it was about 185ms
(mode=30ms). The higher time constants of LNs are
consistent with experimental observations, partially at-
tributed to LNs generating slower Ca2+ spikelets in-
stead of Na+ spikes in locusts (Laurent et al., 1993).

Splitting PNs according to their time constants re-
vealed markedly different activity patterns. Most PNs
responding at an odor onset belonged to the low time
constant group, while those responding with a delay
or at odor offset primarily had high time constants
(Fig. 3). The locust AL includes fast and slow in-
hibitory synapses between LNs and PNs (MacLeod and
Laurent, 1996). As our model does not explicitly in-
clude synaptic time constants, the unit time constants
integrate these synaptic time scales, potentially pre-
dicting the presence of units with high time constants
(400-500ms) that could account for the slow inhibitory
synapses.

Conclusion
We developed a continuous rate RNN model of the lo-
cust AL to study olfactory processing dynamics in in-
sects. The model captured the temporal patterns and
diverse responses of PNs and LNs. Analysis of the
trained weights and time constants provided insights

into the functional roles of neuron types and synaptic
connectivity in the AL, demonstrating the effectiveness
of using RNNs to investigate biological system dynam-
ics.
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