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Abstract
Visual perspective taking (VPT), and the ability to analyze
scenes from a different viewpoint, is an essential feature
of human intelligence. We systematically evaluated if a
large zoo of over 300 deep neural networks (DNNs) could
solve this task like humans can. While DNNs rival human
performance on 3D tasks like depth perception, they are
significantly worse than humans at VPT. Our findings in-
dicate that despite the incredible progress of DNNs over
recent years to rival or exceed human performance on
many different visual tasks, significant progress is still
needed for them to perceive and function like humans in
complex 3D environments.
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Introduction
Piaget posited in his theory of cognitive development that hu-
man children gain an ability to predict which objects are vis-
ible from another viewpoint before the age of 10 (Piaget et
al., 1956; Frick et al., 2014). This ability of “Visual Perspec-
tive Taking” is a marker for the theory of mind (Aichhorn et al.,
2006) and a fundamental feature of human intelligence (VPT,
Fig. 1A). In contrast, deep neural networks (DNNs) have been
reported to rival or surpass human performance on a variety of
visual tasks (Geirhos et al., 2021; Linsley* et al., 2021; Lee et
al., 2017) despite taking little — if any — inspiration from how
biological brains develop or work. Can today’s state-of-the-art
DNNs learn strategies for VPT, or are additional insights from
Neuroscience and Cognitive Science needed to induce these
capabilities into models?

Here, we performed the first large-scale comparison of VPT
abilities in humans and machines. While prior VPT experi-
ments tested participants on a handful of real-world scenes
or a slightly larger number of generated scenes, we de-
vised an approach to generate an unbounded number of real-
world VPT stimuli by leveraging a state-of-the-art 3D computer
graphics method known as “3D Gaussian Splatting” (Kerbl et
al., 2023) (Fig. 1B). Each generated image shows a single ob-
ject, a green camera, and a red ball. We then posed two tasks
on each image to assess an observer’s ability to perceive
complementary properties of the depicted 3D scene (Fig. 2C).
(1) Depth perception: Is the green camera closer than the red
ball? (2) Visual perspective taking: Can the green camera see
the red ball? After evaluating 327 different DNNs represent-
ing many of the leading approaches, from Visual Transformers
(ViT) (Dosovitskiy et al., 2020) trained on ImageNet-21k (Rid-
nik et al., 2021) to ChatGPT4 (Achiam et al., 2023) and Sta-
ble Diffusion 2 (Rombach et al., 2021), we found that while
some DNNs rival human accuracy at depth perception accu-
racy, there is no model in existence today with a VPT ability
comparable to humans.

Approach and Method
Data generation. We systematically evaluated 3D percep-
tion of humans and machines using data generated by Gaus-

Figure 1: (A) Visual Perspective Taking (VPT) is the ability
to predict which objects are visible from someone else’s point
of view, and it is essential for daily interaction with objects.
Here, Piaget’s “Three Mountains Task” tests VPT by having
the viewer describe the scene from the perspective of the
bear (Piaget & Inhelder, 1967). (B) We generate real-world
VPT stimuli using 3D Gaussian Splatting Kerbl et al. (2023)
trained on Co3D Reizenstein et al. (2021) (C) Each stimulus
shows a red ball and a green camera. In the VPT task, ob-
servers decide whether the green camera can see the red
ball. In the depth perception task, they decide if the green
camera is closer than the red ball.

sian Splatting (Kerbl et al., 2023) models trained on the Com-
mon Objects in 3D (Co3D) (Reizenstein et al., 2021) dataset.
Co3D contains videos of unique objects spanning 50 differ-
ent categories, and we trained Gaussian Splatting models on
objects from 30 of the categories. We then added a green
camera and red ball into each model (Fig. 1B) in 3D. Next, we
generated a large number of images from a camera placed in
the 3D scene, and derived ground-truth answers for a depth
perception task and visual perspective taking task at each po-
sition (Fig. 1C). Thus, we were able to measure an observer’s
ability to solve two distinct 3D scene perception tasks while
holding visual statistics of the stimuli constant. We generated
7,408 unique images in total.

Human psychophysics. We measured the accuracy of 20
human participants on both the depth perception and VPT
tasks. To do this we split our dataset into training (6568 im-
ages), validation (730 images), and test sets (110 images).
Human participants were trained on a small subset of the total
training dataset (20 images), and evaluated on the test set
(110 images). The trials consisted of a fixation cross pre-



Figure 2: Humans are significantly better than DNNs at visual perspective taking. (A) While some DNNs rival human
performance on depth perception, the average human accuracy (86%) was 20 percentage points better than the best DNN
(66%) at VPT. DNNs were also significantly better at depth perception than VPT (p < 0.001). (B) DNN accuracy on depth
perception correlated (ρ = 0.26, p < 0.001) with accuracy on ImageNet object classification — a standard pretraining task
for vision DNNs. Some model classes, like visual transformers trained on datasets much larger than ImageNet (ImageNet+;
ρ = 0.28, p < 0.01), had even stronger correlations between their object classification and depth perception accuracy. (C) There
was a weak but significant correlation between ImageNet object classification and VPT performance, but no model type exhibited
an advantage over any other.

sented for 500ms followed by the stimulus for 3s. Participants
had to respond using left/right keys on their keyboard. Par-
ticipants were recruited from https://www.prolific.com/
and had to answer either a depth or VPT task posed on each
image. The experiment lasted around 15 minutes and partici-
pants were paid $5 for their time.

Model zoo and training. We tested 318 DNNs from Py-
Torch Image Models (TIMM) (Wightman, 2019), foundational
vision models like MAE (He et al., 2022), DINO v2 (Oquab et
al., 2023), iBOT (Zhou et al., 2021), SAM (Kirillov et al., 2023),
midas (Ranftl et al., 2020) and Depth Anything (Yang et al.,
2024) that have recently been reported to have surprising ca-
pabilities for 3D scene analysis (El Banani et al., 2024), the
stable diffusion image generation model, and the state-of-the-
art large vision language models (VLMs) ChatGPT4 (Achiam
et al., 2023), Gemini (Team et al., 2023), and Claude 3 (An-
thropic, 2024). We extracted decisions from the TIMM and
foundational vision models by training linear probes, we used
a zero-shot evaluation procedure to test the diffusion model (Li
et al., 2023), and we tested the VLMs using the same proce-
dure as humans.

Results While human participants were significantly above
chance at the depth perception and VPT tasks, the capabil-
ities of DNNs in our zoo were mixed (Fig. 2A). Nearly all
DNNs were significantly above chance (p < 0.001) at solving
the depth task, and their accuracy on it correlated with object
classification performance on ImageNet (Deng et al., 2009)
(a standard proxy for a model’s overall effectiveness FEL et
al. 2022). Some of the DNNs we tested rivaled human per-
formance on the depth perception task (e.g., a Visual Trans-

former trained on ImageNet-21K). We also observed strong
and significant correlations between certain model families,
like Transformers, and performance on the depth task (Fig.
2B). However, DNNs were significantly worse than humans
at the VPT task (Fig. 2A, p < 0.001). Their performance
on VPT was also significantly worse than on the depth task
(p < 0.001). The DNN with the highest performance on VPT
— the MixNet XL with a DeiT3 base — was 66% accurate,
which paled in comparison to the average human accuracy
of 86% (Fig 2C). Our results indicate that no class of model
or scale of training is sufficient to help DNNs achieve human-
level performance at VPT.

Conclusion
Progress in deep learning over the past several years has
largely been driven by a scale-up of existing methods. This
approach has been undeniably effective for nearly every do-
main of intelligence it has been applied to, from vision to lan-
guage, and from biomedicine to physics. However, our work
demonstrates that this DNN scale-up is insufficient for induc-
ing models with at least one fundamental aspect of biologi-
cal intelligence — our ability to switch visual perspectives and
analyze the world from a new viewpoint. This ability for VPT
has been studied for over a half-century in developmental psy-
chology, and its development has been well-characterized in
humans. Thus, our work suggests that some facet of biolog-
ical development that supports VPT is missing from today’s
leading DNNs. Characterizing and developing algorithmic ab-
stractions of these missing principles for DNNs may help form
the foundation for machines that can perceive the world and
others like humans do.
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