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Abstract
Current neural network modeling work in visual recog-
nition has focused primarily on matching behavioral
choices and related accuracy measures. Visual percep-
tion is a dynamic process that unfolds in time, but moving
beyond characterizing choice patterns to capturing tem-
poral aspects of visual decision-making has been chal-
lenging. We introduce a novel computational framework
to optimize recurrent neural networks (RNNs) response
times. First, we consider a random dot motion task and
show how an RNN can be fitted to human psychophysics
data. Second, we train an ideal observer RNN model to
maximize a tradeoff between speed and accuracy. Our re-
sults indicate that human-like reaction time distributions
can naturally emerge in a neural network explicitly op-
timized to solve a task in minimal computing time. Fi-
nally, we use our approach with a biological-plausible cir-
cuit model of decision-making known as the Wong-Wang
model (Wong & Wang, 2006). We show that it is possi-
ble to stack this module on top of a task-optimized con-
volutional neural network to fit human behavioral data.
Overall, our results suggest that the proposed framework
can be effectively used to fit models of visual perception
with the full set of human behavioral data, bringing us
one step closer to an integrated model of human visual
perception.

Keywords: recurrent neural network; human-AI alignment; re-
action times

Introduction
Neural networks have been widely used to model the
visual system with recent neural architectures achieving
near human-level accuracy on complex visual categoriza-
tion tasks (Serre, 2019). Engineering considerations have
largely driven the development of computational models to-
wards scaling them for better performance. However, a grow-
ing body of literature highlights increasing misalignment be-
tween modern deep neural networks and primate vision (Fel
et al., 2022; Linsley et al., 2023). Critically, current deep
neural networks lack the ability to account for reaction time.
In psychological research, reaction time is critical because it
provides insights into cognitive functions’ processing speed
and efficiency (Heitz, 2014). It has been widely known that
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Figure 1: Reaction time distribution fitting. Using a confi-
dence value cannot capture the full distribution of reaction
times (RNN confidence & CNN confidence). Instead, dynami-
cally thresholding an RNN output or stacking a canonical RNN
(WW) onto a CNN output can fit reaction times well.

such processing speed has a complex relationship with accu-
racy measures (Heitz, 2014). Therefore, considering reaction
times is essential for developing a complete understanding of
human vision (Mnih et al., 2014; Lake et al., 2017).Recurrent
Neural Networks (RNNs) constitute a promising framework to
model the visual system as these models can be used to in-
tegrate feedforward processes with feedback ones (Kar et al.,
2019; Wyatte et al., 2014). Furthermore, RNNs explicitly in-
corporate a notion of time via recurrence steps, which can be
used as a proxy for reaction time. Unfortunately, time in an
RNN is not directly differentiable, and hence, standard back-
propagation cannot be used out of the box to fit RNNs to hu-
man reaction times. As a result, researchers have resorted
to surrogate metrics such as measures of uncertainty or con-
fidence levels derived from machine learning to approximate
reaction times (Goetschalckx et al., 2023). Here, we develop
a mathematical approximation of reaction time for RNNs that
can be tuned via back-propagation. This novel framework in-
volves setting adaptive thresholds within the network across
time. Thus, it can potentially approximate human reaction
times better than alternative approaches. Additionally, we ex-
tend this framework to convolutional neural networks (CNNs),
applying a similar approach to modify their architecture with
a biologically plausible circuit, the Wong-Wang model (Wong
& Wang, 2006). The proposed method is versatile, and we
show that it has the potential to enhance a wide range of neu-
ral network architectures, making significant strides toward the
development of a complete model of human visual perception.



Differentiable reaction time framework
We begin by defining a recurrent neural network where the
state at time step t ∈ {1, . . . ,N} is denoted ht . Let us as-
sume that when the hidden state reaches a specific bound-
ary at any time T , the network is compelled to make a de-
cision, meaning that it cannot process inputs beyond time
T . For simplicity, we assume the boundary to be linear in
the space of the hidden state. Mathematically, let us define
T (h) = min{t ∈ {1, . . . ,N} : Whht > 0}. Where Wh is a linear
transformation of the hidden state at time t.

The primary challenge that arises when fitting the model’s
reaction time T (h) with human reaction times is the non-
differentiability of T (h), which prevents the use of the back-
propagation algorithm. This is because T (h) is an integer
that requires non-differentiable operations such as the mini-
mum function and inequality. We approximate the differentia-
tion using a first-order Taylor series expansion.

Let us redefine T ( ˜h(t)) as min{t > 0 : ˜h(t) > 0}, where
h̃(t) =Whh(t). Considering a small perturbation in the hidden
state using first-order Taylor expansions, we get:

T (h̃+δh̃)≈ T (h̃)+
dT
dh̃

δh̃ (1)

Since T is given by the time step in which ˜h(t) reaches the
threshold, then the change h̃(t +( dh̃

dt )
−1δh̃) introduces a pro-

portional change for our defined T, because it means ht would
reach the activity threshold at a different time. Therefore

T (h̃+δh̃)≈ T (h̃)− ( dh̃
dt )

−1
δh̃ (2)

Combining step 1 and step 2 we can reach the quantity:

dT
dh̃

≈−
(

dh̃
dt

)−1

≈ 1
h̃(t −1)− h̃(t)

This means that the function to reach the threshold of activity
is found to be approximately equal to the inverse of the rate
of change of the evolution of the activity h̃. In other words,
if we take a piece-wise approximation of the activity between
time steps, the time it takes to reach the threshold divided by
the difference between the current state to the distance is the
inverse of the rate change (speed).

Task & Stimuli
To validate our approach, we trained a Recurrent Neural Net-
work (RNN) on the Random Dot Motion (RDM) task, a clas-
sic paradigm used extensively in psychophysics studies (Ball
& Sekuler, 1987), human imaging (Shibata et al., 2012), and
electrophysiology (Law & Gold, 2008). The stimuli in this task
consist of dots moving on a screen with different levels of co-
herence toward a predefined direction vs. randomly. Our RNN
is a 5-layered convolution network with a 4096-unit LSTM. The
network was trained for 100 epochs using the Adam optimizer
with a learning rate of 1e-4 for the first 10 epochs and 1e-5 for
the rest. The results showed that it performed this task at a
near human-like level, achieving nearly 100% accuracy under

Figure 2: Evidence accumulation of the RNN model across
time. For higher coherence levels mean reaction time is faster,
for lower coherence levels mean reaction time is slower. The
inset shows the standard deviation of reaction times, where
for the highest coherence (blue), the reaction times are less
varied compared with the lowest coherence (pink)

the high coherence conditions (e.g., 51.2%) and approximat-
ing chance level at low coherence (e.g., 0.8%).

To explore the alignment between humans and the model,
we keep the model parameters frozen and only train a linear
boundary upon the RNN output to fit a signed reaction time
distribution derived from human psychophysics (original ex-
periment here (Green et al., 2010)) (Figure 1, Human RT).
Surprisingly, our model closely matches the human reaction
times (Figure 1, RNN). For comparison, we also adopt the
previous method that fits a confidence value (a linear transfor-
mation of time-weighted logits) from the model to approximate
reaction times.(Figure 1, RNN confidence), and it does not
work.

A biological-plausible drop-in module for fitting
human RT

The Wong-Wang model is a popular mechanistic neural circuit
decision-making model (Wong & Wang, 2006). In its reduced
form, this model resembles an Ornstein-Uhlenbeck process in
which two competing populations interact. When a threshold
is crossed, a decision is made in a winner-takes-all fashion.
Traditionally, the input to the model is a steady value, propor-
tional to the coherence level of the stimulus, e.g if the stimuli
is generated at 51% coherence the model would get as in-
put 0.51 at every single step. One significant limitation of the
model is that it requires meticulous parameter hand tuning.
Here, we offer two improvements to this model. First, we re-
place the constant input (a constant coherence level) with the
output of a stimulus-computable neural network. Second, we
make the model trainable allowing to fit the entire model to hu-
man reaction time data. Results are shown in Figure 1 (CNN
WW).



Conclusions

In this work, we have introduced a trainable framework to train
RNNs to learn to adjust a decision threshold so that decisions
can be made dynamically based on a variable number of time
steps. We showed that such optimization can be used to fit an
RNN directly to human reaction times. We also showed that
such a framework can be used to learn a stimulus-specific pe-
nalize the recurrence steps of RNNs, and human-like reaction
times of the RNN can naturally emerge even when no human
data is provided. Finally, we have transformed a popular RNN
for decision-making, the Wong Wang model, into a trainable
module that can be stacked into any neural network (RNNs
and CNNs) enabling any model to fit human reaction times.
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