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Abstract
The relationship between biological neural network (BNN)
structure and artificial neural network (ANN) function is
poorly understood. In the brain, structure and function
are positively correlated, but far from unity. And yet,
structure acts as a guide for function, while disruptions
in structure can lead to dysfunction. As a NeuroAI ap-
proach, finding topological rules can help us to curtail
ANN behaviours. Thanks to recent efforts in connec-
tomics, or the construction of brain wiring diagrams, this
strategy is now viable. We are well-poised to begin to
explore ‘what’ questions, before proceeding towards the
‘how’ or ‘why’. The ‘what’ in this paper builds on pre-
vious work constructing a taxonomy of mesoscale con-
nectomes across species. We sample from this dataset,
comparing 18 connectomes to their rewired counter-
parts within a neuromorphic machine learning framework
(reservoir computing) on their capacity to exhibit multi-
functionality (MF). We observe a dramatic difference be-
tween connectomes and their rewired variants, suggest-
ing a link between BNN structure and MF. We further-
more identify shared features across ‘successful’ net-
works. Future work will ablate these features and vary
known MF-related parameters (e.g. the spectral radius) in
order to analyze model prediction dynamics.
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Introduction
Connectome-constrained machine learning (CCML) is an
emerging paradigm, combining insights from electron mi-
croscopy and network science for the purpose of advanc-
ing learning algorithms. Recent work has sought to charac-
terize a taxonomy of mesoscale connectomes by their net-
work features (Suárez et al., 2022). Building on this project,
we present an investigation into the capacity of a taxonomy
of mesoscale connectomes for informing multifunctionality in
reservoir computers. We consider 18 connectome networks
and their rewired counterparts on the Seeing Double problem
(Flynn, Tsachouridis, & Amann, 2023), and observe a dra-
matic all-or-none difference in performance in a subset of the
connectome-based networks. We furthermore identify net-
work motifs which are aligned with said connectomes.

Methods

Continuous-time reservoir computers

The reservoir computer (RC) is a recurrent neural network
best characterized by its single hidden (reservoir) layer. The

RC has two benefits in CCML: First, the reservoir layer is en-
tirely customizable, and can thus accommodate connectome
topologies; Second, training occurs only in the final (readout)
layer, which preserves reservoir structure during training.

We consider the Continuous-time RC (CTRC) formulation
from (Lu, Hunt, & Ott, 2018), which was shown to be multi-
functional in Flynn et al. (2023):

ṙ(t) = γ [−r(t)+ tanh( Mr(t)+σWin u(t) )] , (1)

where r(t) ∈ RN is the RC’s state at time t, N is the network
size, γ is the reservoir decay-rate, M ∈ RN×N is the reser-
voir adjacency matrix1, u(t) ∈ RD is the D-dimensional input
time series, Win ∈ RN×D is the input weight matrix, and σ

scales the input to the reservoir. Eq. (1) is solved using 4th or-
der Runge-Kutta with time step τ = 0.01. We defer to Morra,
Flynn, Amann, and Daley (2023) for further training details.

Multifunctionality and seeing double

Multifunctionality (MF) is defined as the capacity of a bio-
logical or artificial neural network (BNN, ANN) to perform two
or more mutually exclusive tasks without retuning its network
connections (Briggman & Kristan Jr, 2008). MF was con-
ceptualized from BNNs, and includes examples such as the
land snail subesophageal ganglion complex and human pre-
Bötzinger complex (Flynn et al., 2023). It was later applied
to ANNs (Flynn et al., 2023), and is at present useful for re-
constructing overlapping attractors – e.g. modelling seizures
(Lytton, 2008) or dynamics of unmanned aerial vehicle flight
(Bi, Qi, Hu, Faradja, & Chen, 2020).

We consider the Seeing Double problem as proposed in
Flynn et al. (2023) and as implemented in Morra et al. (2023),
whereby an RC is trained on a blended input sequence of
overlapping circular trajectories, CA and CB, rotating in oppo-
site directions. As in Morra et al. (2023), we consider the most
difficult case where the circles are entirely overlapping. For
some model class instance, we define a train-validate trial as
multifunctional (‘successful’) if the trained RC reconstructs a
coexistence of CA and CB in its prediction space P without re-
training. We adopt criteria for what constitutes an acceptable
trajectory from (Flynn et al., 2023), without any alterations.

Connectomes and rewired variants

We select 18 mesoscale connectomes from the publicly avail-
able dataset by Suárez et al. (2022), which has been con-
structed using the MaMI dataset – consisting of diffusion-, T1-,
and T2-weighted MRI scans of 124 unique species. Connec-
tomes are size N = 300. We rewire each connectome as in

1M is typically a random graph (e.g. Erdös-Renyi). In this project
we implant connectome topologies and their rewired counterparts.
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Figure 1: Average frequency of success in multifunctionality trials (out of 30) for 18 connectome-based reservoir computers and
their rewired variants. A success threshold illustrates our margin for ‘successful’ networks, used in our graph comparisons.

Suárez, Richards, Lajoie, and Misic (2021) by randomly swap-
ping edge pairs while retaining the size, sparsity, and degree
sequence of the network. We also preserve the set of connec-
tome adjacency matrix weights during the rewiring process.

Results

Seeing double trials

We compare the multifunctional (MF) performance for a se-
lection of 18 connectomes and their rewired analogues on the
Seeing Double task. Each connectome-based RC is trained
and validated on 30 sets of 30 trials. At the end of each set,
we track the frequency of ‘successful’ trials (out of 30). We
use the standard deviation of the trial performance across ses-
sions to create error bars. See Fig. 1. We observe that nearly
all connectomes significantly outperform their rewired vari-
ants, with the exception of the Nasua3 network. Significance
is determined via a Wilcoxon signed-rank test (p < 0.05).
We describe seven of these connectomes as ‘successful’ net-
works by way of a chosen MF threshold average frequency of
3 versus ‘unsuccessful’ networks. Interestingly, inter-species
MF success is mostly preserved, with the exception of the Ba-
boon1 and Baboon4 networks.

Discussion

Graph comparisons

For the sake of comparing more MF versus less MF networks,
we showcase averaged network statistics for ‘successful’ ver-
sus ‘unsuccessful’ original connectomes in Table 1. We con-
sider the mean shortest path length (MSPL), average cluster-
ing coefficient (C ), betweenness centrality (B̄G), rich club co-
efficient (φ(k)G) and degree centrality (D̄G) for each graph G.
From these comparisons we report that degree centrality for
successful connectomes is significantly lower (by Mann Whit-
ney U test, p < 0.05) than that of unsuccessful variants, point-
ing towards the importance of more localized roles, as noted
in (Suárez et al., 2022). We furthermore show in Fig. 2 that
unsuccessful networks appear to take on a small-worldness
criterion as opposed to successful networks. Although the dif-
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Figure 2: MSPL vs. C for successful vs. unsuccessful graphs.

ferences observed may indicate a factor to consider in further
work, they are not significant for this connectome selection.

Table 1: Successful (S) vs. unsuccessful (U) graph statistics.

Statistic µS σS µU σU p-value

MSPL 2.722 0.127 2.600 0.056 0.073
C 0.154 0.043 0.172 0.027 0.479
B̄G 0.00565 0.00044 0.00533 0.00017 0.085
φ(k)G 0.221 0.068 0.227 0.071 0.860
D̄G 0.044 0.005 0.049 0.002 0.044

Future Work

The continuation of this project will address localized graph
differences and their impact on multifunctionality. We will
furthermore create feature-removed models by ablating rel-
evant factors, and determine each model’s performance on
Seeing Double, as in Morra and Daley (2023). We will also
seek to characterize model prediction dynamics in P for all
connectome-based RCs versus their rewired analogues.
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