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Abstract
When rodents learn goal-directed navigation, a high den-
sity of place fields form at reward locations, and the fields
increase in width and skew against the movement direc-
tion. However, a normative framework to characterize the
field distribution during task learning remains elusive.
We hypothesize that the observed place field dynamics
is a feature of state representation learning that helps
policy learning maximize the reinforcement learning ob-
jective. We develop an agent that uses Gaussian basis
functions to model place fields which directly synapse to
a policy network. Each field’s center, width and ampli-
tude, and the policy parameters are updated trial by trial
to maximize the cumulative discounted reward. When the
agent learns to navigate to a goal in a one-dimensional
track or two-dimensional environment with obstacles, a
higher number of Gaussian fields organize near the goal
while the rest of the fields increase in width to tile the
goal trajectory. We show that the correlation between
the frequency of being in a location and the field density
at that location increases with training, as postulated by
the efficient coding hypothesis. Additionally, Gaussian
fields elongate along the goal trajectory aggregating fu-
ture positions with similar actions, resembling a succes-
sor representation-like map. We further show that this
learned map facilitates faster policy convergence, when
the number of basis functions is low. To conclude, we
develop a normative model that recapitulates several hip-
pocampus place field learning dynamics and unify alter-
native proposals to offer testable predictions for future
experiments.
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Introduction
Place fields have been studied extensively given their causal
role in goal-directed navigation (Steele & Morris, 1999).
Canonical navigation tasks require animals to find a hidden
goal either in a 1D track or 2D arena to receive a reward. At
the start of learning, place fields are distributed throughout
the environment but reorganize with a higher density of fields
forming at the goal location (Hok et al., 2007; Lee, Briguglio,
Cohen, Romani, & Lee, 2020). Furthermore, field widths and
centers increase and skew against the direction of movement
respectively (Mehta, Quirk, & Wilson, 2000), although there
are other fields that become narrower with experience (Frank,
Stanley, & Brown, 2004). Although there are several proposals
to characterize place field representations (Ganguli & Simon-
celli, 2014; Stachenfeld, Botvinick, & Gershman, 2017), it is

unclear why these representations form and how they change
during goal-directed learning. Whether this representation re-
sults in faster policy learning also remains elusive. Here, we
develop a normative navigation model whose Gaussian field
parameters and navigation policy are optimized using a rein-
forcement learning objective to recapitulate several place field
phenomena while demonstrating faster policy convergence.
The model suggests a unification of disparate proposals and
proposes testable predictions for neural experiments.

Methods
We model each place field’s firing rate φi using a Gaussian

basis function φi(xt) = αi ∗ exp
(
− ||xt−λi||2

2σ2
i

)
. The field cen-

ters uniformly tile the 1D track or 2D arena with constant
widths σi = 0.1 (Fig. 1A). The fields directly synapse to
an action selector using π(a j

t |xt) = so f tmax(∑N
i=0 W⊤

i j φi(xt))
that stochastically selects one of two (left, right) or four
(left, right, up, down) discrete actions in either the track
or arena respectively. The discrete actions are con-
verted to a velocity metric so that the actual step taken
in the environment is continuous (Kumar, Tan, Libedin-
sky, Yen, & Tan, 2022) and capped at 0.1. The objec-
tive function is the cumulative discounted reward J(θ) =
Ea∼π

[
∑

T
k=0 γkrt+1+k

]
and is maximized by optimizing the pa-

rameters θ = {Wi j,λi,σi,αi} using the Policy Gradient al-

gorithm ∇θJ(θ) = Ea∼π

[
∑

T
t=0 ∇θ logπ(a j

t |xt)∑
T
k=0 γkrt+1+k

]
(Sutton, McAllester, Singh, & Mansour, 1999).

Results
We first study how place fields uniformly distributed (Fig. 1A)
on a continuous 1D track will reorganize when an agent learns
to navigate from the start (green line at -0.5) to the goal (or-
ange line at 0.5) with a radius of 0.01 to receive a reward of
value 1, after which the trial ends. Since the goal radius is
small, the agent has to reduce its velocity at the goal to avoid
passing over and receive the reward. After 2000 learning tri-
als, a high number of fields organize after the start and just
after the goal while the rest of the fields stretch along the tra-
jectory (Fig. 1B). We consider the field density (Fig. 1D)
as the summation of the population firing rate at a location
d(x) = ∑

N
n φn(x). When uniformly distributed, field density is

constant (blue) along the track, and after 500 trials, field den-
sity increases before the goal (orange). After 2000 trials, the
field density peaks after the start location and ramps down
before peaking again after the goal.

An agent’s visit frequency f (x) is the proportion of time
spent at specific locations of the environment, and is aggre-
gated over 5 trials and plotted as histograms in (Fig. 1C). In



Figure 1: (a) 13 uniformly distributed fields on a 1D track.
Agent navigates from the start (green line) to a goal (orange
line). (b) After learning, fields stretch along the trajectory and
organize after the goal. (c) Frequency of time spent at the
start location shifts towards the goal location with learning.
Histogram aggregated over 10 iterations. (d) Before learn-
ing, field density is uniform along the track (blue), but after
learning, the density peaks at the start and ramps down to
the goal before peaking again after the goal (green). Aver-
age density over 10 iterations. (e) Correlation between fre-
quency and density is zero (left) and positive (right) before
and after learning respectively. Each colors corresponds to
10 iterations. (f) Frequency-density correlation monotonically
increases with training. Grey and black lines indicate correla-
tion for 10 iterations and the average. (g) (Left) 25 uniformly
distributed fields (left) in a 2D arena with obstacles (grey).
Agent navigates to the goal (red) from the start (blue). (Right)
Fields along the goal trajectory elongate and overlap while be-
ing narrow to avoid obstacles. (h) When the number of fields is
low, field adaptation facilitates faster policy convergence (blue)
compared to when only the policy is optimized (orange).

the first 5 trials, the agent spends a higher frequency of time
at the start location given its random policy (blue). As learning
progressed, the agent’s frequency distribution shifted to the
goal (orange) such that by the last 5 trials, the agent spent
a higher frequency at the goal, with a slight peak at the start
(green). There is no correlation (right, R=−0.094,P= 0.187)
between the frequency of visit f (x) and the field density d(x)
at the start of learning (Fig. 1E), but correlation increased
monotonically as learning progressed (Fig. 1F) to become
significantly positive (left, R = 0.439,P < 1e−5), suggesting
that field adaptation when maximizing the cumulative dis-

counted reward gradually tiles the trajectory distribution.
Next, we study the hypothesis that the learned place field

representation facilitates faster policy learning in a continuous
2D arena with obstacles. The agent has to navigate from one
of 4 start locations (blue circles) to the goal (red circle) (Fig.
1G). We evaluate two condition, where we only optimize the
synapses Wi j from the fields to the policy (policy learning) or
we optimize both the field and policy parameters θ (state rep-
resentation + policy learning). After learning, The field widths
(green circle) are stretched along the goal trajectory and are
narrow along regions with obstacles while field centers aggre-
gate before the goal (red dots), replicating the field organiza-
tion in the 1D track. When the number of fields is small (Fig.
1h), policy learning alone (orange) does not converge after
2000 trials but optimizing both the field and policy leads to be-
havior convergence (blue). As the number of fields increase
to 441, policy learning alone converges to a similar navigation
performance as when fields are also optimized.

Discussion
We have shown that when maximizing a normative goal such
as the cumulative discounted reward, place fields organize
with a high density at goals while the rest stretch along the
goal trajectory. Importantly, we show that the normative ob-
jective optimizes field density to become correlated with the
agent’s trajectory distribution with training d(x) ∝ f (x). Fur-
thermore, we show that adapting field parameters improves
policy learning, when the number of fields is low.

The field density optimized through reinforcement learning
supports the efficient coding hypothesis proposal which spec-
ifies that the optimal field density has to be proportional to the
stimulus distribution to improve discriminability (Ganguli & Si-
moncelli, 2014), which in this case is to find the small goal in a
specific location. Based on the learned policy (not shown), we
propose that the increase in field width is a mechanism to ag-
gregate continuous information requiring the same action into
a single discrete state to speed up policy learning. Hence,
we postulate that the skewed place fields (Mehta et al., 2000;
Frank et al., 2004) and the successor representation proposal
(Stachenfeld et al., 2017) is an emergent outcome when learn-
ing goal-directed navigation.

Using this normative navigation model, we also observe
representational drift after policy convergence (Qin et al.,
2023) and predict that fields near the goal drift at a higher
rate. Additionally, maximizing the reward prediction error
(Schulman, Moritz, Levine, Jordan, & Abbeel, 2016) instead
of the cumulative discounted reward as a normative goal reca-
pitulates the remapping dynamics observed when reward ex-
pectancy is low (Krishnan, Heer, Cherian, & Sheffield, 2022).
Future works include developing an analytical solution to de-
termine the optimal field density when maximizing the reward
objective function and a biologically plausible learning algo-
rithm to adapt the field and policy parameters to model task
learning (Kumar, Tan, Libedinsky, Yen, & Tan, 2021).
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