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Abstract

While language models have begun to show signs of un-
derstanding causal relationships, vision models seem to
lag behind. We introduce Counterfactual World Modeling
(CWM) — a visual world model trained for future predic-
tion that demonstrates capabilities analogous to various
levels of Pearl’s “Ladder of Causation”'. A key finding
of this paper is that mid-level vision structures can be
formulated as counterfactual queries to CWM, enabling
their extraction under a unified, self-supervised architec-
ture. This not only moves closer to a human-like learn-
ing process, but also reduces the reliance on expensive
annotated datasets for training task-specific models — a
long-standing predicament in computer vision.
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Introduction

Despite advances in modeling high-level cognitive functions
like language understanding, algorithms lag behind human-
like visual understanding. They have two shortcomings: 1)
Models are not task-general — e.g. a segmentation model
can’t be used for depth estimation and training requires costly
annotated datasets (Kirillov et al., 2023). This is unlike hu-
mans, where useful structures are extracted from a unified
model (Hong & Yamins, 2016). 2) Vision models struggle to
answer causal questions — e.g. object movement due to ex-
ternal force (Bear et al., 2021). In Pearl’s “ladder of causa-
tion”, current computer vision models are arguably closer to
the lower rungs (Pearl & Mackenzie, 2018), while language
models exhibit signs of more advanced abilities (Li, Yu, & Et-
tinger, 2022). We now show how CWM seeks to address
these challenges by climbing Pearl’s ladder of causation.

'Pearl’s causal hierarchy has three levels of increasing complex-
ity: “Association” involves identifying patterns; “Intervention” entails
predicting outcomes as a result of changes to stimuli; and “Counter-
factuals” deals with reasoning about hypothetical scenarios.
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Level 1: Learning associations via
temporally-factored masked prediction

We train a transformer architecture that reconstructs masked
observations of video frames to learn “associations” between
spatiotemporal patches of observed video inputs. A subset
of the input patches is masked, and the predictor minimizes
the mean squared error (MSE) between the reconstructed
and the original masked patches. Given the input frame pair,
x1,x € R3>*HXW we train a predictor ‘I’(x‘f‘?xE) = £, which re-
ceives the first frame x; and the second frame x, with masking
ratio o, € [0, 1] and reconstructs the masked patches of x,
(see Figure 1a). We set o to 0 and [ to 0.90 — a core hypoth-
esis of our work is that such an asymmetric masking policy,
with high masking in the second frame, makes the predictor
W learn to concentrate scene transformations into the embed-
dings of a few visible patches in x,. This enables meaningful
control over the predictions via patch-level modifications. As
we will demonstrate next, this choice of masking policy is what
enables the model to make a leap towards the higher rungs of
the causal heirarchy. CWM is trained on Kinetics — a dataset
comprising of YouTube videos (Kay et al., 2017).

Level 2: Interventions via patch-level prompting

With a pre-trained predictor, we can apply interventions to in-
put stimuli by modifying the patches in x; that control scene
transformations. These interventions are akin to the do oper-
ator introduced in Pearl’s framework and are considered more
powerful than “Associations” as they involve making predic-
tions about novel stimuli that are possibly outside the train-
ing distribution (Goldberg, 2019). To formalize the procedure
of intervention, we first define a prompt p as a set of video
frames input to the predictor:

p = {x1,x2 |x1,x e RV (1)

An intervention p is defined as an input to the predictor that
has been modified from the initial prompt p to change the out-
come of the predictor (See Figure 1b).

(c) Counterfactuals for structure extraction

counterfactuals

B +masked next frame

predictions keypoints ]
B -

N | L v
select patch best {
.. simulates next frame SESNEY
— " flow
+ masked next frame
md v
E ﬂ.-”d simulate
pixel motion
W [
segmen
v
-

simulate
object motion

L enables extraction of structures — 1

Figure 1: Climbing the Ladder of Causation with the CWM framework: (a) Learning associations via temporally-factored
masked prediction. Given a frame pair input, the predictor takes in dense visible patches from the first frame and only a sparse
subset of patches from the second frame as inputs, and learns to predict the masked patches. This policy encourages the model
to concentrate scene dynamics into embeddings of a few patches. (b) Interventions via patch-level prompting. As a result of
the temporally-factored masking, we can intervene by modifying one or a few visual patches in the prompt and steer the outcome
of the predictor. (c) Counterfactuals for structure extraction. Multiple vision structures can be extracted by comparing the
results of an intervention to alternative futures (e.g. observed ground truth or observed predictions).



Level 3: Counterfactuals for structure extraction

Next, we discuss how mid-level vision structures can be spec-
ified as counterfactuals (Pearl & Mackenzie, 2018). These are
more powerful than interventions as they involve comparisons
between the current observed prediction ¥(p) or observed
ground truth x and retrospective intervention outcomes, ¥(p)
(see Figure 1c). We describe these specifications below:

Keypoints CWM provides a category-agnostic definition of
keypoints as patch locations in x, that, when revealed to the
predictor, yield the lowest reconstruction error as defined by
the loss function, L. The set of keypoints on x; is defined as:

K(x1,x2,n) = argmin L(¥(p), ¥(p))
kC1I,|k|=n 2)

where p = {x1,x7' |x7'is visible atk}

Here, I refers to the complete set of patch locations of an
image, and the intervention p is the modification of the origi-
nal input p = {x1,x2}, where the second frame x4’ is masked
everywhere except at keypoint locations.

Optical flow is the task of estimating per-pixel motion be-
tween video frames (Teed & Deng, 2020). To compute this,
we introduce an intervention that adds a small perturbation
to the pixel in the first frame and estimate pixel motion by lo-
calizing the perturbation response in ¥(p). Given a prompt

p={x ,xg} and a location (i, j), we construct an intervention
p= {x1+8,~j,xg}, which adds a small perturbation §;; to the
first frame at the pixel location. With a perturbed first frame,
the predictor propagates the perturbation in the next frame,
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(b) Quantitative comparisons.

Methods Interventions (FID )  Flow (F1 J)
VideoMAE (tube-masking) 213.4 56.3
CWM (temporally-factored masking) 25.4 46.8

Figure 2: Analysis of intervention outcomes and extracted
structures. Visualizations in Figure a) suggest that it is crucial
to use the proposed temporally-factored masking policy dur-
ing training. VideoMAE trained with tube-masking has notably
worse structure extractions — segmentation is particularly poor
with no meaningful segments discovered. Table b) provides
further evidence for this in terms of the quality of intervention
outcomes and optical flow.

under the original scene transformations specified by xg. The
corresponding pixel location in the next frame can be localized
by finding the peak of the perturbation response. The flow at
(i, ) can then be defined using the following equation:

Fjta,x) = argmax [¥(p) =¥(p)| - (1)) ()

Segmentation is defined as a grouping of stuff that moves
together under physical actions (Spelke, 1990). CWM extracts
segmentation by motion interventions which simulate object
motion at a pixel location, followed by grouping parts of the
image that move together. Given an image x as input, we de-
fine an intervention p = {x,¥"}, where " is produced by re-
vealing only a few patches in x and translating them by a small
offset. With a temporally-factored masked predictor, moving a
few patches in the prompt will cause the entire object to move
in the resultant intervention outcome ¥(p5). Segments can
then be extracted by thresholding the flow between ¥(5) and
the input image:

S(x) = F(x, ¥(p)) >0 4)

Multiple objects can be discovered by iteratively extracting
segments at locations that are not part of a discovered object.

Results

We find that CWM extracts meaningful vision structures using
the procedures described above (see Figure 2a). As hypoth-
esized previously, a key aspect of our framework that leads to
this ability is the temporally-factored masking policy used for
learning associations during training. To test this, we evaluate
VideoMAE (Tong & Song, 2022), a closely related video trans-
former architecture that is trained with an alternate masking
policy called tube-masking — known to be effective for learn-
ing video representations and achieves state-of-the-art results
on tasks like activity recognition. However, we find that when
we apply our structure extraction procedures to VideoMAE, it
yields poor intervention outcomes and leads to inferior coun-
terfactual queries (see Figure 2a). Additionally, the quality
of the intervention outcomes as measured by Frechet Incep-
tion Distance (FID) (Heusel & Ramsauer, 2017) on the DAVIS
dataset and F1 scores (Geiger & Lenz, 2013) on the SPRING
optical flow benchmark (Mehl & Schmalfuss, 2023) reported in
Figure 2b also speaks to the importance of using a temporally-
factored masking policy during training.

Conclusion

In this paper we present a simple recipe for building vision
models that climb Pearl’s ladder of causation. Further, we es-
tablish that a practically useful consequence of the climb is
that it allows for the extraction of mid-level vision structures in
a self-supervised manner from a unified architecture, moving
closer to human-like visual scene understanding. Currently,
our study is limited to mid-level vision — extending the CWM
framework to more complex cognitive tasks like vision and lan-
guage interaction poses an interesting future direction.
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