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Abstract
Artificial neural networks optimized for ecological tasks
have emerged as leading models of sensory systems.
Models optimized separately for sound localization and
recognition tasks account for a range of human audi-
tory behaviors, but it has remained unclear whether a
single model could account for behaviors in both types
of tasks. We optimized a model to jointly localize and
recognize sounds from simulated auditory nerve input.
The resulting multi-task model reproduced a range of hu-
man speech recognition effects related to noise, rever-
beration, and spatial separation. We also trained linear
classifiers to perform simple psychoacoustic tasks using
the model’s internal representations. The learned model
features produced human-like patterns of psychoacous-
tic judgments. The results provide further evidence that
many aspects of human hearing can be understood as
optimized solutions to ecological tasks.
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Introduction
Evolution and development drive biological perceptual sys-
tems towards optimal performance on tasks that are impor-
tant for survival. Machine perceptual systems optimized under
similar constraints as biological systems suggest that signa-
tures of this optimization process are ubiquitous in human be-
havior (Kell & McDermott, 2019; Kanwisher, Khosla, & Dobs,
2023). In hearing, deep neural networks optimized for nat-
uralistic speech (Kell, Yamins, Shook, Norman-Haignere, &
McDermott, 2018), pitch (Saddler, Gonzalez, & McDermott,
2021), and localization (Francl & McDermott, 2022) tasks can
account for many aspects of human perception (Saddler & Mc-
Dermott, 2024). However, these prior models were separately
optimized for each of these domains, unlike the human audi-
tory system which readily performs multiple tasks.

To progress towards a more complete computational ac-
count of audition, we optimized a single model to localize
and recognize speech, voices, and environmental sounds
from simulated auditory nerve representations of naturalistic
scenes (Fig. 1). Once optimized, we compared the model’s
speech recognition and spatial hearing to that of humans in
different listening conditions (manipulating background noise,
reverberation, and spatial separation between speech and
noise sources).

To further probe similarities between human and model
auditory processing, we measured psychoacoustic thresh-
olds from the model by training linear classifiers to make bi-
nary judgments using the task-optimized features. We en-
vision these classifiers as analogous to decision rules that
human participants use to perform simple hearing tests us-
ing relatively fixed internal representations (which were plau-
sibly optimized for ecological tasks over longer timescales).
Here, we present findings from one psychoacoustic experi-
ment measuring thresholds for detecting amplitude modula-
tions (Viemeister, 1979; Dau, Kollmeier, & Kohlrausch, 1997).

The results provide a normative account for fundamental
aspects of human hearing, suggesting phenomena like spa-
tial release from masking (Plomp, 1976) and modulation fre-
quency selectivity (Houtgast, 1989) can be understood as
consequences of optimization for ecological tasks.

Methods

Model Architecture

Auditory Nerve Input Representation All sounds were
processed with an auditory nerve model to simulate spiking
responses of 32000 nerve fibers per ear. The model consisted
of a gammatone filter bank, half-wave rectification, a lowpass
filter, and sigmoidal rate-level functions to yield instantaneous
spike rates. Arrays of spike counts sampled from these rates
(50 frequency channels, 20000 timesteps at 10 kHz, 3 nerve
fiber types per ear) served as input to a neural network.
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Figure 1: Model optimized for ecological auditory tasks.

Branched Convolutional Neural Network We used a feed-
forward neural network architecture with 7 convolutional
blocks (each consisting of linear convolution, ReLU activa-
tion, Hanning pooling, and batch normalization), a 512-unit
fully connected intermediate layer, and a task-dependent out-
put layer (Saddler, Francl, et al., 2021). To enable good per-
formance across all four auditory tasks included in the opti-
mization objective, we introduced a branch point after the sixth
convolutional block, with separate subsequent stages for each
task (Fig. 1). Before the branch point, all model weights are
shared between the tasks. After the branch point, weights are
task-specific.

Model Optimization

Tasks and Dataset The training dataset included labels for
four naturalistic auditory tasks. Stimuli were 2s (at 50 kHz) bin-
aural auditory scenes spatialized with a virtual acoustic head
and room simulator. Each scene consisted of a speech or nat-
ural sound target rendered at a single location with texture-like
background noise rendered diffusely at multiple locations. The
model’s tasks were to localize the target (operationalized as a
504-way classification task) and make three types of recogni-
tion judgments (800-way word recognition and 500-way voice
recognition tasks for speech targets; 50-way environmental
sound classification for non-speech targets). The dataset con-
sisted of 7.6 million scenes rendered in 2000 different rooms.

Training The model was optimized via stochastic gradi-
ent descent to minimize the summed softmax cross entropy
losses from the four classification tasks. When a task was



undefined for a training example (e.g., word recognition for a
non-speech stimulus), the task was excluded from the loss.

Model Evaluation
Speech Recognition in Noise We measured human and
model word recognition scores at -3 dB SNR in 43 different
background noise textures (Fig. 2A). Humans (47 online par-
ticipants) and our model performed the same word recogni-
tion task with identical diotic stimuli. Talkers in the evaluation
speech material were not seen during training.
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Figure 2: Model replicates effects of noise, reverberation, and
spatial separation on human speech recognition.

Reverberation and Spatial Separation We simulated an
experiment from Beutelmann and Brand (2006) by measuring
model speech reception thresholds in an anechoic and a re-
verberant room as a function of the spatial separation between
a target talker (always at 0° azimuth) and a spectrally-matched
noise source (at varying azimuth) (Fig. 2B & C).

Amplitude Modulation Detection Participants heard sta-
tionary and amplitude-modulated noise bursts and identified
which burst was modulated (Fig. 3A). Viemeister (1979) and
Dau et al. (1997) measured human thresholds for detecting
sinusoidal amplitude modulation as a function of modulation
frequency and noise carrier bandwidth (Fig. 3B). To simu-
late these experiments on the model, we presented the model
with stimuli consisting of two successive 1s noise bursts and
trained linear classifiers on the ReLU activations (concate-
nated from all intermediate layers) to report whether the first
or second burst was modulated. We trained a separate clas-
sifier for each noise bandwidth considered: 0 Hz (pure tone),
3, 31, 314, and 6000 Hz. In each case, the noise band was
centered at 5000 Hz. Training and test stimuli for the linear
classifiers were independent samples from the same distribu-
tions (varying uniformly in modulation frequency and depth).

Results
Speech Recognition Experiments
The 43 different noise conditions produced reliable variation in
human word recognition scores (25% to 80% correct; split-half
reliability = 0.968). When tested on the same stimuli and task,
the model performed very similarly to humans, accounting for
98% of the explainable variance (Fig. 2A).

Speech reception thresholds measured from the model
under different reverberation conditions and spatial arrange-
ments were also human-like (Fig. 2B & C). Since the word

recognition task and stimuli for the model experiment differed
from the human experiment (Beutelmann & Brand, 2006), we
compared effect sizes rather than absolute thresholds. In ane-
choic conditions (closed symbols), the model showed a large
benefit of spatial separation between the talker and a noise
source (up to 6.7 dB at 120°). In reverberant conditions (open
symbols), this benefit was considerably reduced in both hu-
mans and our model.

These results suggest the model relies on similar cues to
humans when recognizing speech in adverse listening condi-
tions.

Amplitude Modulation Detection Experiment
Changes in a sound’s amplitude across different timescales
are important cues for many aspects of hearing. Human
thresholds (Fig. 3B) for detecting small amplitude modulations
have been measured extensively (Dau et al., 1997). To in-
vestigate whether human-like modulation processing emerges
in representations optimized for natural tasks, we measured
modulation detection thresholds from different model variants
as a function of modulation frequency and noise bandwidth.

Thresholds measured from the task-optimized model qual-
itatively and quantitatively resemble those of human listeners
(Fig. 3C). By contrast, thresholds measured from an untrained
model (Fig. 3D) or directly from the auditory nerve input (Fig.
3E) fail to reproduce the human pattern of behavior. These
results suggest the task-optimized features of our model in-
stantiate human-like computations for processing amplitude
modulation.

Task: was the first or second noise burst amplitude modulated?A
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Figure 3: Modulation detection thresholds measured from the
task-optimized model resemble those of humans.

Discussion
Our model innovates on prior work by jointly optimizing for
sound localization and recognition tasks, which enabled in-
vestigation of the combined effects of noise, reverberation,
and spatial separation on human speech recognition (Hawley,
Litovsky, & Culling, 2004). The model accounted for several
aspects of human binaural speech perception. Psychoacous-
tic thresholds measured from the task-optimized model’s fea-
tures provide new evidence for aligned internal representa-
tions between deep neural networks and human perceptual
systems. Models that predict human behavior from simulated
auditory nerve input in both complex environments and simple
psychoacoustic tasks may be particularly suitable for investi-
gating perceptual consequences of hearing loss.
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