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Abstract
Deep learning provides new data-driven tools to relate
neural activity to perception and cognition, aiding scien-
tists in developing theories of neural computation that in-
creasingly resemble biological systems both at the level
of behavior (Geirhos et al., 2021) and of neural activ-
ity (Conwell et al., 2023). But what in a deep neural
network should correspond to what in a biological sys-
tem? This question is addressed implicitly in the use of
comparison methodologies that relate specific neural or
behavioral dimensions via a particular functional form.
However, distinct comparison methodologies can give
conflicting results in recovering even a known ground-
truth model in an idealized setting (Han et al., 2023), leav-
ing open the question of what to conclude from the out-
come of a comparison using any given methodology.

Here, we develop a framework to make explicit
and quantitative the effect of both hypothesis-driven
aspects—such as the architecture of a deep neural
network—as well as methodological choices—such as
the input stimuli or similarity measure—in a systems
comparison setting. We demonstrate via both simulated
and analytic learning dynamics of deep neural networks
that, while the role of the comparison methodology is of-
ten de-emphasized relative to hypothesis-driven aspects,
this choice can impact and even invert the conclusions to
be drawn from a comparison between neural systems. We
provide evidence that the right way to adjudicate a com-
parison depends on the use case—the scientific hypoth-
esis under investigation—which could range from iden-
tifying single-neuron or circuit-level correspondences to
capturing generalizability to new stimulus dimensions.
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Idealizing neural systems comparison

When using deep neural networks as computational models
of brain and behavior, researchers commonly use compari-
son methodologies such as representational similarity anal-
ysis (RSA; Kriegeskorte et al., 2008) or behavioral extrapola-
tion tests (Geirhos et al., 2021) to quantify the goodness-of-fit
of a given network to neural or behavioral data. We aim to
evaluate the validity of such comparisons in an idealized set-
ting in which the reference system is not a biological brain or
mind but instead a known, white-box system—another deep
neural network. Namely, we consider pairs of teacher (target)
and student (model) neural networks, f ∗ and f , and neural or
behavioral similarity measures defined over these networks,
sim( f ∗, f ); see Fig. 1A. Negative results in this idealized case
suggest caution when interpreting real-world comparisons be-
tween neural systems.

A theory of neural systems comparison

To obtain analytical insight into the impact of comparison
methodologies, we can make use of theoretical results about

the learning dynamics of deep neural networks. For simplicity
of presentation, we present here deep linear neural networks
analyzed with RSA, and vary their hyperparameters system-
atically to control the comparison; however, we can extend
a The exact learning dynamics of a deep linear feed-forward
network, f (x) = WL · · ·W1x, can be described analytically in
terms of the singular value decomposition (SVD) of the task-
dependent input-output correlation matrix, Σ

yx = USVT (Saxe
et al., 2019). Critically, certain parameters that must be set by
the modeler (such as the initial conditions of learning, includ-
ing the initialization scale of the weights ρ) control the repre-
sentational structure that the network learns to solve a given
task, which, in turn, can determine the outcome of a systems
comparison.

We demonstrate in Fig. 1B-C how this dependency influ-
ences the outcome of a systems comparison based on rep-
resentational similarity, with a resulting double dissociation:
Functionally similar (dissimilar) systems can be made to ap-
pear similar (dissimilar) via a methodological parameter. In
Fig. 1B, all four networks are trained on the same task to con-
vergence and thus implement (on average and with respect
to the training objective) identical input-output functions, yet
their representational similarity matrices are similar or differ-
ent based on the initialization scale, ρ.

Conversely, in Fig. 1C, we consider wide (N large) networks
trained on one of two tasks. In this setting, networks trained
with small initializations will be judged dissimilar, but networks
trained with large initializations will be judged similar. These
results show that representational similarity as a comparison
methodology does not separate networks trained on similar
tasks from those trained on different tasks without further as-
sumptions on methodological parameters.

Simulated neural systems comparison
We simulate learning in deep non-linear feed-forward net-
works, f (x) = WL σ(WL−1 · · ·σ(W1x)) for a non-linear acti-
vation function σ (hyperbolic tangent in Fig. 1D-F), in teacher-
students settings (Fig. 1D-F), and compare systems using
different methodologies. In concordance with the analytical
results, we can attenuate and even reverse representational
similarity for functionally similar networks; see Fig. 1F.

The confounding role of representational regime
Rich and lazy learning—distinct representational regimes at-
tested via models of biological learning (Farrell et al., 2023)—
can be controlled via methodological parameters already
demonstrated (ρ and N Woodworth et al., 2020). Our re-
sults suggest representational regimes should be treated
as hypothesis-relevant variables like architecture, and reveal
even more granular representational regimes than rich and
lazy that control representational comparisons.

The principal role of use case
Our framework allows us to idealize scientific use cases as
parametric interventions f ∗ 7→ f , allowing us to make explicit
the causal effect of model or task misspecification. For
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Figure 1: A The idealized systems comparison setting. Given two systems f ∗ are f , are the two systems judged as similar
per sim( f ∗, f )? B-C Analytical results reveal a double dissociation between functional and representational similarity in a
trained two-layer linear network, where representational similarity is captured by a simple kernel matrix K =

(
W1X

)⊤ (
W1X

)
.

B Functionally similar systems can be made to appear similar or dissimilar: initial weight variance ρ2 determines the learned
representational structure in distinct regimes (incl. rich & lazy). C Functionally dissimilar systems can be made to appear
similar or dissimilar: A large number of neurons N prevents the network from learning a task-specific representation. D The
teacher-students setting defines a learning environment when simulating learning dynamics. E Training and generalization
dynamics of two-layer non-linear networks in the teacher-students setting of D, demonstrating student convergence of training
loss (lower bound) to the teacher’s behavior and thus functional similarity, but distinct learning dynamics and final generalization
error (upper bound) as the initialization scale ρ (color) is varied, evidencing distinct representational regimes. F Simulations of
pairs of deep non-linear networks that are functionally identical (here, trained to convergence on a simple XOR task) but whose
representational comparison (here, RSA) depends non-monotonically on ρ, N.

example, we investigate the robustness of conclusions about
representational or functional similarity to measurement noise
in neural activity, and to employing a surrogate activation func-
tion such as rectified linear activation (ReLU) with more favor-
able analytical properties in a computational model. We also
investigate the effect of task misspecification via correlated but
distinct teachers in a teachers-students setting, which aims to
answer questions about the impact of training on a surrogate
task, say image classification, instead of a biological objective.

Prior work
Prior work has empirically demonstrated negative results
in specific settings when employing a specific comparison
methodology. For example, Han et al. (2023) demonstrate
difficulty matching neural networks of the same hyperparame-
ters and architecture when using linear probing, and Dujmović
et al. (2023) demonstrate cases in which second-order cor-
relations between stimuli confound representational similarity
analyses. However, these prior works present isolated coun-
terexamples, and the generalizability of such conclusions to
other comparison methodologies is not made clear.

More critically, observational results cannot provide a
strong causal link between a component of the comparison
methodology—say, the complexity of the candidate model as
realized by the number of hidden units N—directly through
learning to the outcome of the comparison—say a given lin-
ear probe score. In contrast, our theory-based approach can

analytically link such components to the outcome of the com-
parison via their causal effect on the representational learning
dynamics of a student model, enabling us to derive precise
results about a continuity of comparison methodologies, in-
cluding the representational regime and use case.

Conclusions
We demonstrate positive and negative results in relating rep-
resentational and functional similarity via simulated and ana-
lytical learning dynamics of deep neural networks. Our ide-
alized setting, where the ground truth model is known and
representable by the candidate model, brings into question
conclusions from neural systems comparisons performed in
more complex settings in the wild. We provide a path for-
ward: Contextualizing comparisons within a use case, such
as aiming to capture correspondence at a granular (e.g., cir-
cuit) level under model or task misspecification, can provide
sufficient constraints to guarantee the outcome of a systems
comparison.
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