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Abstract

The brain functions as a scale-free network, with fMRI
BOLD signals demonstrating a power-law distribution.
Traditional deep neural networks often overlook this as-
pect, leading to their underperformance due to a structure
ill-suited for the complexity of brain signals. We intro-
duce DivfreqBERT, an end-to-end model tailored for time
series data, leveraging scale-free network properties for
improved encoding of biological characteristics. Utilizing
Lorentzian and multi-fractal functions, it segments whole-
brain dynamics into three components, each consistent
with the power-law function and displaying distinct small-
world connectivity features. This method significantly
enhances several downstream tasks, including predict-
ing sex, age, intelligence, and depression in the Adoles-
cent Brain Cognitive Development (ABCD) dataset, en-
compassing over 11,000 participants aged 9-10, and the
UK Biobank (UKB) dataset, with data from over 500,000
participants aged 40-69. During pretraining, DivfreqBERT
employs variations in small-worldness across frequen-
cies to order nodes by communicability for masking, fa-
cilitating the learning of networks where highly commu-
nicable nodes play pivotal roles. Scaling up the model
by pre-training on the extensive UKB dataset and fine-
tuning on ABCD data markedly improved model perfor-
mance. Additionally, DivfreqBERT provides interpretabil-
ity by showing which connections between ROIs within
each frequency range influenced the outcome and which
ROIs were important. Overall, divfreqBERT demonstrates
the potential of neural networks informed by complex
system insights, emphasizing the benefits of integrating
the brain’s complexity into neural network models.
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Introduction
The rapid progress of deep learning underscores the need for
models that accurately capture the brain’s complex charac-
teristics, as traditional models fail to reflect its dynamic, mul-
tidimensional nature (Kan et al., 2022; Bedel, Şıvgın, Dal-
maz, Dar, & Çukur, 2022). The brain’s unique scale-free and
small-world properties are essential for adapting to environ-
mental changes and supporting cognitive functions, with hubs
forming numerous connections and most nodes being reach-
able within a few steps, promoting efficient information trans-
fer (van den Heuvel, Stam, Boersma, & Pol, 2008; West &
Shlesinger, 1990). This activity generates a 1/f-like power
spectrum, indicating a power-law distribution of signal fre-
quencies (Equation 1).

log(power) ∝ −βlog( f requency) (1)

The β parameter in brain dynamics reflects time-lagged
auto-correlation, where a larger β indicates long-range mem-
ory, and a smaller β signifies more efficient information pro-
cessing, with variations linked to different neurological disor-
ders (Eke, Herman, Kocsis, & Kozak, 2002; Tolkunov, Rubin,
& Mujica-Parodi, 2010; Maxim et al., 2005; Radulescu, Rubin,
Strey, & Mujica-Parodi, 2012). Using the Lorentzian function
(equation 2) and multifractal equation (equation 3), the power
spectrum is segmented into three parts with distinct β values,
uncovering the multifractal nature of brain dynamics as seen
in varied resting-state fMRI patterns (He, Zempel, Snyder, &
Raichle, 2010; Miller, Sorensen, Ojemann, & Den Nijs, 2009).

Power( f ) =
A2

ultralow · f 2
1

f 2 + f 2
1

(2)

Power( f ) =

{
Alow · f βlow if f1 < f < f2

Ahigh · f βhigh if f > f2
(3)

We introduced DivfreqBERT, a model that segments the
whole brain signal into parts based on a power-law distribu-



tion, outperforming other models and enhancing interpretabil-
ity. It identifies key ROI connections within specific frequency
ranges. During pretraining, we utilized variations in small-
world characteristics across frequency ranges to prioritize
node masking by communicability(Estrada & Hatano, 2008),
helping the model understand the dynamics of highly influen-
tial nodes.

Results

Model Performances

Table 1: ABCD sex prediction (ROI: HCP MMP1)

Model AUROC ↑ ACC ↑
Xgboost 0.784±0.005 0.709±0.003
BNT 0.891±0.005 0.800±0.013
BolT 0.883±0.001 0.795±0.001
vanilla BERT 0.883±0.006 0.778±0.027
DivfreqBERT 0.913±0.006 0.834±0.008

Table 2: ABCD fluid intelligence prediction (ROI: HCP MMP1)

Model MAE ↓ MSE ↓
Xgboost 0.787±0.002 0.987±0.033
BNT 0.793±0.008 1.061±0.093
BolT 0.728±0.004 0.845±0.010
vanilla BERT 0.722±0.005 0.838±0.036
DivfreqBERT 0.670±0.015 0.720±0.024

Methods

Dividing Frequencies

Figure 1: Examples of the frequency dividing.
Example of ABCD dataset. f1 (red dotted line) and f2 (green
dotted line) are fitted by equation 2 and equation 3. They de-
pend on individuals.

Overall Architecture

Figure 2: Overall model architecture.
A DivfreqBERT module operates within specific frequency
ranges on divided timeseries signals. In its temporal mod-
ule, BERT updates the [CLS] token, which is then processed
through a classifier to produce ŷ. Spatially, signals are trans-
posed and processed through a multi-head attention mecha-
nism to compute attention matrices based on ROIs. Param-
eter sharing occurs in the temporal module, while the spatial
module maintains unique parameters for each frequency, with
the output including ŷ and attention matrices for each range.

Pretraining

Figure 3: Pretraining model architecture.
The DivfreqBERT pretraining module operates on timeseries
signals divided by frequency, using BERT’s hidden state in the
temporal module and a multi-head attention mechanism in the
spatial module to calculate attention matrices based on ROIs.
Parameters are shared in the temporal module but not in the
spatial module. Outputs include the hidden state and attention
matrices for each frequency range, with temporal and spatial
masking indicated by lavender rectangles and purple lines, re-
spectively.
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