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Abstract 

Learners often seek multiple objectives paired with 
different strategies, and the brain needs to (re)activate 
representation fit for each objective. We questioned if 
neural reactivation, typically viewed as stereotyped 
during the learning process, is the subject of control to 
promote different types of navigational learning. We 
trained macaques to forage in a first-person virtual maze. 
Two behavioral repertories emerged from the low-level 
features; one seeks reward (explore-like) and the other 
for information (exploit-like). While alternating among 
two objectives, the orbitofrontal (OFC) and retrosplenial 
cortices (RSC) preplayed the future optimal path and 
goal itself, specifically when prioritizing reward. When 
prioritizing information, both cortices strategically 
devalued the uninformative paths with reduced 
reactivation. Meanwhile, the reactivation of the fastest 
path that leads to the goal was reinforced when 
prioritizing reward. The artificial agent foraging in the 
identical maze confirmed that RSC and OFC devaluating 
the uninformative path and reinforcing the reward-
optimal path promotes the reward rate. These results 
highlight that neural ensemble adaptively aids the 
learning process as per the need of each moment. 

Keywords: virtual-reality navigation, retrosplenial cortex, 
orbitofrontal cortex, neural reactivation, preplay, multi-
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Results 

We trained two macaques to navigate the first-person 
virtual reality maze using a joystick (Figure 1A, top). 
The monkey began each trial in a random location and 
was rewarded if reached the jackpot goal location 
(which was fixed within each session). For each choice 
point (i.e., junctions), twelve observable low-level 
behavioral features were quantified (Figure 1A, bottom; 
head turn speed, head turn consistency, residence time 
at the choice point, speed at, 500 ms before, and after 

the choice point, joystick press strength at, 500 ms 
before, and after the choice point, and acceleration at, 
500 ms before, and after the choice point). 

Two latent learning strategies 

While encountering 4,549 choice points per subject 
on average, we found that the naturalistic navigational 
behavior fell into two clusters, visually in t-distributed 
stochastic neighbor embedding (tSNE) space (Figure 
1B) and quantitatively in K-mean clustering algorithm 
performance (Figure 1C; maximum performance at 
K=2). In state 1 (referred to as exploit-like), the subjects’ 
choice resulted in the more optimal path, meaning it led 
closer to the goal location (Figure 1D). In state 2 
(referred to as explore-like), on the other hand, the 
choice was on the less visited route (i.e., the more 
informative path). Over trials, the portion of exploit-like 
behavior increased while the explore-like behavior 
decreased (Figure 1E). This together indicates that 
while subjects learned the maze, they naturally 
alternated between two strategies – prioritizing 
immediate reward and broadening the knowledge of 
spatial structure. 

Preplay of goal and goal-directed path 

 To understand the neural basis of each learning 
strategy, we recorded the retrosplenial cortex (RSC; 
655/738 neurons for each subject, respectively) and the 
orbitofrontal cortex (OFC; 581/928 neurons for each 
subject), simultaneously. We investigated whether the 
neuronal ensemble encoding the goal location was 
reactivated state-conditionally (goal reactivation) as 
well as reactivation of the path between the goal 
location and the current choice point (path reactivation). 
The goal reactivation was measured by the correlation 

Figure 1. Two latent learning 
strategies.  
(A) Subjects foraged reward at the 
goal location in a virtual reality 
maze. An illustration of behavioral 
clusters extracted from low-level 
features, each reflecting different 
latent objectives. (B) Low-level 
behavioral features in t-SNE space 
(C) K-means clustering perform-
ance (optimal K=2). (D)  Decision 
outcomes to be either optimal path 
in exploit-like state or informative in 
explore-like state. (E) Percentage 
of exploit-like states increased over 
trials within a session. 



of the firing rate at the goal location with those at choice 
points. To compute path reactivation, the firing pattern 
at the current position and all the other locations were 
compared and aligned into one direction, anchoring the 
goal location (Figure 2A). 

We found that in RSC and OFC, the neural pattern of 
the goal and the path to it were reactivated far stronger 
when the subject’s strategy was on prioritizing the 
reward (exploit-like state) (Figure 2B and C; left two 
columns). Moreover, the degree of reactivation reflects 
the subject’s choice behavior; suboptimal choices—
selecting paths that do not direct to rewards—exhibited 
goal reactivation levels comparable to those during 
optimal choices, yet they showed diminished path 
reactivation (Figure 2B and C; right two columns). 
Together, preplay-like results demonstrate that different 
representations can be triggered and recapitulated 
contingent upon the specific learning objectives.  

Distinct learning strategies in reactivation 

We further investigated if the extent to which each 
learning objective is achieved alters the reactivation 
strength. Indeed, we observed that the path reactivation 
changed depending on the informativeness and 
optimality of the last visit’s choice (Figure 2D); the 
reactivation of the previously visited (uninformative) 
path was decreased after explore-like learning in both 
RSC and OFC, while reactivation of the optimal path 
was increased after exploit-like learning in RSC. The 
differential change contrasts the devaluation-based 
learning in the explore-like state with the conventional 
reinforcement-based learning in the exploit-like state.  

Finally, we simulated an artificial agent foraging in the 
identical maze with path choices among options based 

on the weight updates (Figure 2E). When enforcing 
various combinations of devaluation (decreasing path’s 
weight) and reinforcement strategies (increasing path’s 
weight), we found that the changes in RSC and OFC’s 
largely overlapped with the highest reward rate 
combinations. The simulation confirms that the 
distinctive two learning patterns reflected in RSC and 
OFC’s reactivation were tightly associated with reward 
optimization. 

Discussion  

The current study supports the hypothesis that each 
learning process controls the distinct types of neural 
reactivations in service of the need of the moment. This 
challenges the traditional notions of neural reactivation 
associated with learning as a fixed, stereotyped form 
into a multi-faceted one for distinctive learning 
objectives, which may include curiosity (Kidd & Hayden, 
2015; Poli et al., 2024) and empowerment (Brändle et 
al., 2023; Klyubin et al., 2005). 

Moreover, although OFC’s function is typically 
confined to value-based decision-making, the preplay 
of the spatial layout shown in the current result supports 
the notion of OFC’s involvement in navigational 
planning (Basu et al., 2021; Maisson et al., 2023; 
Wikenheiser et al., 2021). 

As a growing number of studies discover repertories 
even in complex naturalistic behaviors (Berman et al., 
2016; Pereira et al., 2019; Voloh, Maisson, et al., 2023), 
the current study points out that even unconstrained 
behaviors, outside the simple laboratory tasks, can be 
bottom-up ethogrammed in line with various cognitive 
process, opening up the richness of naturalistic 
cognition (Yoo et al., 2021, 2020). 

Figure 2. Reactivation of 
RSC and OFC supports 
distinct learning strategies. 
 (A) The reactivation maps 
(firing pattern comparison 
between one position and the 
others) were rotated to align 
the goal location to different 
positions. (B)  Reactivation of 
goal location (C) Reactivation 
of paths from current corner 
to goal (D) The change of 
path reactivation, conditioned 
by informativeness or 
optimality accomplished from 
the previous visit. (E)  The 
reward rate of artificial agents 
with various combinations of 
strategies in the same maze. 
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