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Abstract
Research into the representational similarity between
deep neural networks (DNNs) and the human visual cor-
tex aims to deepen our understanding of both systems.
Here we explored the alignment between DNNs and the
ventral visual stream by extending conventional repre-
sentational similarity statistics to a spectrum of similar-
ities across thousands of latent dimensions. The spec-
trum is generated by computing the correlations between
aligned latent dimensions in model and brain representa-
tions. Using this approach, we found that DNN layers and
regions of visual cortex have shared high-dimensional
representations, spanning thousands of dimensions. The
dimensionality of these shared representations exhibits
an overall decrease from early to late visual regions. How-
ever, by separately reducing the channel and spatial di-
mensions of DNNs, we found that there is a complex re-
lationship between dimensionality and the visual hierar-
chy. Specifically, in early visual regions, the alignment
with DNNs relies heavily on high spatial dimensionality,
whereas in late visual regions, it relies heavily on high
channel dimensionality. Together, these results demon-
strate the potential insights that can be gained by charac-
terizing the full spectrum of high-dimensional alignment
between computational models and visual cortex.
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Introduction
Deep neural networks (DNNs) serve as a computational
framework for modeling the human brain (Kriegeskorte, 2015;
Yamins & DiCarlo, 2016; Richards et al., 2019). In particu-
lar, deep convolutional neural networks have been found to
be predictive of neural responses in the visual cortex (Yamins
et al., 2014; Güçlü & Gerven, 2015; Kriegeskorte, 2015;
Yamins & DiCarlo, 2016; Eickenberg, Gramfort, Varoquaux,
& Thirion, 2017). Various metrics are available to study the
alignment between regions of visual cortex and DNN repre-
sentations. These include representational similarity analysis
(RSA) (Kriegeskorte, Mur, & Bandettini, 2008), voxel-encoding
RSA (veRSA) (Kaniuth & Hebart, 2022; Konkle & Alvarez,
2022), and average voxel-wise encoding score (Elmoznino &
Bonner, 2022), which are often reduced to a single summary
statistic for a region of interest.

However, previous studies have uncovered power-law
eigenspectra in the latent geometry of model representations
(Ghosh, Mondal, Agrawal, & Richards, 2022; Kong, Margalit,
Gardner, & Norcia, 2022) and brain representations (Stringer,
Pachitariu, Steinmetz, Carandini, & Harris, 2019; Gauthaman,
Ménard, & Bonner, 2023), highlighting the significance of
high latent dimensions in understanding these representa-
tions—something a single statistic cannot capture. Here, we
introduced a novel metric that quantifies the similarities be-
tween visual cortex and DNN representations across many
latent dimensions. This involves projecting both representa-

tions into a common space and extracting the shared informa-
tion across a spectrum of dimensions. We applied this metric
across different levels of the visual hierarchy and model layers
to conduct a detailed analysis of representational alignment.
Additionally, we manipulated the number of channel and spa-
tial dimensions in the model representations to examine their
impact on alignment.

Methods

To obtain model representations, we extracted layer activa-
tions from a DNN with a ResNet50 architecture trained on Im-
ageNet (Russakovsky et al., 2015; Conwell, Prince, Kay, Al-
varez, & Konkle, 2023). We obtained brain representations for
areas V1-V4 and the high-level ventral stream from the Nat-
ural Scenes Dataset (NSD) (Allen et al., 2021). This dataset
includes fMRI responses from eight human subjects who each
viewed 10,000 natural images. The analyses on different vi-
sual regions and model layers used all images seen by each
subject. For the analysis of reduction in channel and spatial
dimensions, we used 5,000 images due to computational limi-
tations. We performed separate reductions of channel dimen-
sions and spatial dimensions via sparse random projections.

We computed a spectrum of representational alignment us-
ing the cross-decomposition method described in previous
work (Gauthaman et al., 2023). Briefly, this method applies
singular value decomposition to the cross-covariance matrix
of the model and brain activations, which identifies a common
space of latent dimensions that maximize the covariance be-
tween the two systems. Singular vectors are learned on a
training set of images and then used to project a held-out set
of test images into the common space. We then correlated
the paired latent dimensions of the model and brain in the test
set to generate a spectrum of correlations.

Results & Discussion

The cross-decomposition spectra derived from comparing
brain and model activations show that these systems have
shared information across many latent dimensions (Fig. 1B),
and they further demonstrate that the dimensionality of these
shared representations is highest in early regions of the cor-
tical hierarchy (V1-V4) and decreases in later regions (high-
level ventral stream). These findings show that the DNN and
visual cortex can be aligned along many orthogonal latent di-
mensions with reliable shared variance, allowing us to exam-
ine the full spectrum of shared representations between these
systems. We next performed follow-up analyses to character-
ize key properties of these shared dimensions.

First, when plotting these spectra for all model layers, we
observe a hierarchical correspondence between model depth
and early vs. late regions of visual cortex (Fig. 2). Specif-
ically, V1-V4 is better explained by early and intermediate
model layers, whereas the high-level ventral stream is better
explained by deeper layers. This hierarchical correspondence
was observed across the entire spectrum of shared dimen-
sions. However, we also noted an interesting trend across



ranks of latent dimensions, whereby differences across model
layers are more pronounced at higher-rank dimensions. This
suggests that while all layers explain relatively similar variance
at low ranks, only the best-matching layer for a region explains
reliable variance in higher dimensions.

Figure 1: A. We computed the representational similarity spectrum
between layer activations from a DNN and fMRI responses from the
visual cortex. B. Spectra for comparing V1-V4 and high-level ventral
stream with the model layers that best align with these areas.

Figure 2: Spectra for comparing all model layers with areas V1-
V4 and high-level ventral stream reveal hierarchical correspondence
between the model and the visual cortex.

Figure 3: Selective reduction of channel and spatial dimensions in
the DNN have differential effects on the spectra for areas V1-V4 and
high-level ventral stream.

We next sought to better understand the differences be-
tween the spectra for V1-V4 and the high-level ventral stream.
We wondered if the higher dimensional spectrum for V1-V4
was largely driven by the dimensionality of the spatial encod-
ing in this region. To probe this, we performed dimensionality

reduction in two different ways: in one, we reduced only the
spatial dimensions of the DNNs and in another we reduced
only the channel dimensions (i.e., features). By doing so, we
were able to determine the degree to which the shared repre-
sentations between the model and brain were driven by high-
dimensional spatial encoding versus high-dimensional feature
encoding. This analysis revealed a double dissociation (Fig.
3). The shared spectrum for V1-V4 dropped substantially
when the spatial dimensionality of the DNN was reduced, but
the impact of channel reduction was much smaller. In con-
trast, the shared spectrum for the high-level ventral stream
dropped when the features dimensionality of the DNN was re-
duced, but was almost completely unaffected by spatial re-
duction. These findings reveal the need to account for the
multifaceted nature of dimensionality in DNNs, whose dimen-
sions can be factorized into spatial and feature components
with distinct functional properties.

Together, this work demonstrates the high-dimensional na-
ture of the shared representations between DNNs and visual
cortex, and it highlights a methodological approach for char-
acterizing and probing the full spectrum of shared dimensions
between these systems. We note that many of the high-rank
dimensions that can be revealed with this approach are rela-
tively low-variance and would, thus, have little contribution to
conventional variance-weighted metrics, like RSA and voxel-
wise encoding accuracy. Approaches for examining the simi-
larities and differences between DNNs and brains in high di-
mensions may open new opportunities for evaluating and un-
derstanding computational models in neuroscience.
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