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Abstract

Humans excel at generalization. Recent studies suggest
that the latter emerges from systematic compositional-
ity: The ability to adapt to (or understand) novel contexts
based on the flexible recombination of previously learned
(sub)concepts (or ”cognitive abstractions”). Here, we
propose a framework to study the effects of cognitive ab-
stractions by leveraging standard generative neural net-
works. As predicted by empirical human studies, neu-
ral networks with cognitive abstractions, learn faster and
generate systematic out-of-distribution (OOD). Moreover,
we show that these cognitive abstractions can be used
to infer the underlying latent factor that generate the im-
ages. Our framework can be used to analyze the repre-
sentational basis that allow for the emergence of these
properties.

Keywords: Compositional learning; systematic generalization;
auto-encoder; gradient-based inference.

Imagine wearing a red coat, a green hat, yellow pants, a
red nose, and huge shoes. Aside from looking like a clown,
your ability to generate that image emerges from your sys-
tematic generalization skills (Lake et al., 2017). Such skills
are based on compositional learning: encoding concepts into
their sub-components and systematically recombining these
sub-components to make sense of novel contexts or generate

novel behavior to flexibly adapt to these contexts (Calderon et
al., 2022; Lake & Baroni, 2023).

Compositional learning has been shown to be useful in
reinforcement learning settings (Lehnert et al., 2020; Liu &
Frank, 2022). In the context of neural networks, composi-
tional learning is suggested to depend on the neural geom-
etry of cognitive representations (Fusi et al., 2016; Ito et al.,
2022). However, how these representations are recombined
in order to adapt to novel contexts remains unclear. Re-
cent work suggests that flexible control (or recombination) of
these representations may be subtended by thalamo-cortical
projections that flexibly gate processing in prefrontal areas
(Halassa & Sherman, 2019). Such mechanistic implementa-
tions in neural networks have been shown to produce robust
context-dependent task performance (Flesch et al., 2022),
avoid catastrophic forgetting in continual learning (Hummos,
2023), promote task structure generalization (Collins & Frank,
2013), and balance the trade-off between shared versus sep-
arated task representations (Verbeke & Verguts, 2022).

In this work, we present a framework to study the ef-
fects of providing cognitive abstractions to neural networks,
and test the emerging properties associated with this addi-
tion. We propose Cognitive Abstraction-BAsed compositional
GEneralization (CABAGE), a framework inspired by gating
functions of the thalamus. As predicted by human learning
studies (Dekker et al., 2022; Lake et al., 2017), we show that



these abstractions generate several interesting properties, in
an image generation setting. Moreover, CABAGE provides
a natural solution to infer cognitive abstractions via gradient-
based inference (GBI; see below). In the remainder of the
manuscript we: (i) provide a formal description of CABAGE,
(ii) show that it allows for faster learning, (iii) OOD image gen-
eration and compositional recombination, (iv) and can be used
to infer the latent factors generating the image.
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Figure 1: CABAGE network structure: We provide an (variational)
auto-encoder with an extended cognitive abstraction embedding vec-
tor (z0, z1, ..., zN ) which encodes the latent factors used to generate
the images in the dataset, concatenated with the usual latent embed-
ding (green encoding).

CABAGE formalization. We set up CABAGE within the
(V)AE framework (Kingma & Welling, 2022). We pad an addi-
tional cognitive abstraction layer to the usual latent embedding
of (V)AEs (Fig. 1)1. This padding is built via the concatena-
tion of one-hot encoding representations of each latent fac-
tor (z0, z1, ..., zN ). During training, the network is presented
with an image while simultaneously activating the nodes (in
the cognitive abstraction layer) representing the ground truth
factors that generated the image. The goal for the network is
to minimize the pixel-wise mean-squared error (MSE) recon-
struction loss:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (1)

We train the networks to reconstruct images from the 3D-
Shapes dataset (Burgess & Kim, 2018). Images of this
dataset are generated from 6 ground truth-independent latent
factors. Such a dataset allows us to divide the dataset in train-
ing trials, test trials, and OOD trials (i.e., combination of latent
factors that has never been seen by the networks), for this
work we follow the compositional splits provided by Schott et
al., 2022.

CABAGE learns better and faster. As shown in figure 2,
CABAGE displays steeper learning curves (indicative of faster
learning) compared to traditional (V)AEs. Note that this is true

1A formal description of the network architectures can be found
here: https://anonymous.4open.science/r/gradient based
inference-A2DD/

even in cases where the dimensionality of the latent embed-
ding is equated between both network types. Moreover, the
MSE loss reaches a lower level in CABAGE, hence the quality
of the reconstruction is higher.
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Figure 2: A. Learning dynamics for AE (left) and VAE (right) with
(blue) and without (red) cognitive abstractions (CA) on iid and ood
examples.

CABAGE produces OOD and systematic generaliza-
tions. Figure 2 further displays the ability of CABAGE to
produce OOD generalization. The darker shade lines reflect
the MSE loss of trials that combine latent factors never seen
before by the network. Compared with traditional (V)AEs,
CABAGE can generate OOD images with a lower MSE loss.
Moreover, figure 3A displays examples of OOD image gener-
ation starting from a noisy picture (figure 3A), or even in the
absence of any input from the latent embedding, i.e. the la-
tent embedding is clipped and activation to the decoder is only
generated by activating the cognitive abstraction layer (figure
3B). Importantly, figure 3C also shows that setting the cogni-
tive abstraction node values to states that combine two latent
factors generates images that systematically combine these
factors. Here, we show an example where we co-activate the
cube and spherocylinder cognitive abstractions, thereby gen-
erating an ”in-between” geometric shape.

CABAGE allows quick latent factor inference. An im-
portant property of CABAGE is its ability to rapidly infer the
latent factors generating a given image. To do so, we per-
form gradient-based inference (GBI), a one-iteration inference
process. The latter entails taking the reconstruction loss gradi-
ents at the cognitive abstraction layer (i.e., gradients are back-
propagated up to that layer), normalizing them within each
vector representing the distinct factors, and selecting the node
with the highest probability. Figure 4 shows that GBI can clas-
sify the latent factors generating the image much higher than
chance-level both for in-distribution and out-of-distribution tri-
als.

Conclusions. We propose a framework to study the addi-
tion of cognitive abstractions in neural networks. As predicted
by human learning, we show that these abstractions gener-
ate fast learning, systematic generalization, and quick latent
factor inference. Moreover, they can be recombined for flex-
ible adaptation (or image generation in this case). CABAGE
allows for future work to explore the representations that un-
derlie such properties.
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Figure 3: A. OOD generalization from a noisy input image. B. OOD
generalization only from the cognitive abstraction layer. C. System-
atic generalization by recombining cognitive abstractions.
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Figure 4: Gradient-based inference (GBI) of latent factors for CA-AE
(left) and CA-VAE (right). The distinct lines depict the accuracy of
GBI as a function of learning steps.
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