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Abstract 

Covert attention results in contrast-dependent 
influences on neuronal activity with three distinct 
signatures (Carrasco, 2011): response gain, 
contrast gain, and baseline shift. Convolutional 
Neural Networks (CNNs) have recently been used 
to model covert attention tasks, capturing some 
known results from psychology and 
neurophysiology (Srivastava et al., 2024b). This 
work uses CNNs to understand emergent attention-
related neuronal Contrast Response Functions 
(CRFs). We trained 10 CNNs on the Posner cueing 
task to optimize target detection with a central cue 
pointing to the likely target location, with varying 
contrasts of the display elements. With no explicit 
attention mechanisms built in, the networks show 
a behavioral cueing effect and all three gain types 
emerged in the deeper layer neurons of the 
networks: Response Gain (17.4%), Contrast Gain 
(2.3%), and Baseline Shift (22.8%). Using ROC 
analysis for each neuron, we assessed whether 
different gain types are associated with different 
target and cue sensitivities. Response gain 
neurons had the highest target sensitivity and the 
lowest cue sensitivity. Baseline shift neurons had 
the highest cue sensitivity and the lowest target 
sensitivity. Contrast gain neurons had target/cue 
intermediate range sensitivities. Together, we 
show that the diversity of neuronal gain types 
reported in the literature might arise as an 
emergent property of task optimization and 
neurons with different CRFs neurons might be 
associated with representations of the predictive 
cue and target. 
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Introduction 

Covert Attention refers to the ability to select a part of 
an image or a scene without moving one’s eyes. The 
Posner cueing task (Posner, 1980) and its variants are 
the most prominent tasks in the behavioral and 
neurophysiological studies of covert attention. In this 
task, observers find a target that appears at one of two 

possible locations, with a cue, typically an arrow or a 
box, pointing to the likely target location. Human 
observers are more accurate when the cue points to the 
target location (valid trials) than when it points opposite 
to the target location (invalid trials). In terms of neuronal 
signatures, a common manipulation is varying the 
contrast of the items at the two locations and 
characterizing the response as a function of contrast at 
the cued and uncued locations. Three signatures have 
been reported in the literature: an increasing effect of 
attention with contrast (response gain); a peak effect at 
middle contrasts and low effect at extreme contrasts 
(contrast gain); and a fixed effect across contrasts 
(baseline shift). The normalization model of attention 
(Reynolds & Heeger, 2009) aimed to model a common 
framework that explained both response and contrast 
gain. Here, we investigate the type of contrast response 
functions that emerge in a CNN trained to maximize 
target detection on a cueing task (Srivastava et al., 
2024b). We show that with no divisive normalization or 
explicit attention mechanism, the three gain types 
emerge in the neurons in the deeper layers of the CNNs 
and each gain type neuron is uniquely related to the cue 
and target tuning properties of the neurons. 

Methods  

Stimuli: Each stimulus contained two tilted lines with a 
central cue: a horizontal line, pointing to the left or right 
half of the image. The target, a line tilted 20 degrees 
was present with a 50% probability, and when present, 
appeared at the location pointed to by the cue 80% of 
the time and opposite to the cue 20% of the time. The 
Weber contrast levels of the tilted lines were uniformly 
sampled from 0.0625, 0.125, 0.25, 0.5, and 1.0 and 
both the tilted lines always had the same contrast within 
a stimulus. The cue contrast was fixed at 0.8. Additive 
white Gaussian noise was added to each stimulus.  

Architecture and Training details: The CNNs had 3 
convolution layers with 10, 18, and 24 kernels (size 3 
by 3) each followed by max pooling (2 by 2). The last 
two layers were dense layers of sizes 2000 and 2 
respectively. Tanh activation function was used except 
for SoftMax in the output layer. The CNNs were trained 



via gradient descent to predict if the target was present 
in an image. All contrasts were trained jointly. 
 
Neuronal Gain Curves: 10 sets of 1000 test images 
with target and cue at left, target, and cue at right, target 
left with the cue at right, target right with the cue at left, 
per contrast, were shown to the networks and the 
responses of each neuron were obtained. For each 
location, we compared the mean across the 1000 
images in each set for the valid vs. invalid conditions. 
Significance testing was done across the 10 sets with 
FDR correction. We used the Naka-Rushton equations 
to classify the gain curves as Response Gain, Contrast 
Gain, and Baseline Shift:  
 

𝑅(𝐶) = 𝑅𝑚𝑎𝑥
𝐶𝑛

𝐶𝑛+𝐶50
𝑛 + 𝑅𝑜𝑓𝑓𝑠𝑒𝑡                 (1) 

Where 𝑅(𝐶) denotes the neuron’s response at contrast 

𝐶, and 𝑅𝑚𝑎𝑥, 𝐶50, 𝑛, and 𝑅𝑜𝑓𝑓𝑠𝑒𝑡 are fitting parameters. 

The fitting parameters are obtained first for the neuron’s 
response to invalid stimuli. For fitting the CRF for valid 
condition, the 𝑛 parameter is kept the same as the 
invalid condition. Then, one parameter at a time is 
varied, keeping the other two the same as the invalid 
CRF, to fit valid CRF. The R2 value for all three fits is 
calculated, and a neuron is classified as response gain, 
contrast gain, or baseline shift if the best fit is obtained 

on varying only 𝑅𝑚𝑎𝑥, 𝐶50, or 𝑅𝑜𝑓𝑓𝑠𝑒𝑡 respectively. Only 

neurons with R2 > 0.9 on both valid and invalid 
conditions were considered. 
 
ROC Analysis: For target sensitivity, the CNN was 
shown 10 sets of 1000 noisy images, each with no cue 
and containing the following: only the target at right, 
only the distractor at right, only the target at left, and 
only the distractor at left. The response of each neuron 
to these stimuli was recorded. For each neuron’s pair of 
response distributions (target present and absent), the 
area under the ROC (AUROC) for detecting the target 
vs. distractor presence at each location was calculated. 
For the cue sensitivity, the same procedure was 
repeated with only the cue present/absent at each 
location, with no target or distractors in the scene. 
Sensitivity was defined as |AUROC – 0.5|. 
 

Results 

Behavior Results: All networks showed  performance 
between 64-75% on an unseen test set across 
contrasts, and a difference between valid and invalid 
trials for most contrasts. 

ROC Results: The early convolution layers were 
retinotopic and showed separate subpopulations of 
neurons tuned to the cue and the target. In the third 
convolution layer, we find neurons tuned jointly to the 
target and the cue but only at one spatial location at a 

time, while the dense layer has neurons integrating the 
target and cue across locations. These results agree 
with (Srivastava et al., 2024a) but they used a 
peripheral cue and only one contrast level.  
 
Neuronal Gain Curves: While the early layers have 
neurons whose responses fit the Naka-Rushton 
equations, they don’t show a significant difference in 
response when a valid vs. an invalid cue is present, and 
neurons with the three gain types are found in the dense 
layer. We found that across models, baseline shift is the 
most prominent gain type (22.8±2.9 %), followed by 
response gain (17.4±1.9 %), followed by contrast gain 
(2.3±0.4 %).  
 
New gain types: Besides the types of gain reported in 
the attention literature, we also find neurons with a 
negative slope with respect to contrast, and neurons 
with lower response to a valid target than to an invalid 
target at the same location. Among these, we find 
20.4±2.2% fit the baseline shift equations, 16.1±1.3% fit 
the response gain equations, and 1.4±0.3% fit the 
contrast gain equations.  
 
Relating gain types with cue and target 
sensitivities: We find that neurons classified as 
response gain have the highest target sensitivity 
(0.26±0.02) and the lowest cue sensitivity (0.05±0.001) 
while baseline shift neurons have the lowest target 
sensitivity (0.18±0.02) and the highest cue sensitivity 
(0.08±0.001). Contrast gain neurons had both 
sensitivities between the response gain and baseline 
shift neurons (0.21±0.05 target; 0.06 ±0.002 cue).  

 

Figure 1: (a) Example of the three gain types observed 
in the CNN neurons. (b) Mean sensitivity (|AUROC-0.5|) 
to the cue (blue) and target (green) by neuronal gain 
type. Error bars indicate standard error over ten 
networks. 

Conclusions 

The diversity in the neuronal gain types is typically 
unified using the divisive normalization model of 
attention(Itthipuripat et al., 2014; Reynolds & Heeger, 
2009). Here, we use CNNs with no explicit divisive 
normalization built-in, train them to maximize target 



detection across contrasts, and find that all three 
neuronal gain types reported in the literature emerge in 
the network. Further, the sensitivity of these neurons to 
the cue and the target are related to the neuronal gain 
type. Together, we provide an alternative plausible 
explanation for the diversity of neuronal gain types 
reported in the literature and a testing bed for neural 
network models of attention. 
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