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Abstract
Speech is central to human life. However, how the hu-
man brain converts acoustic speech into language re-
mains incompletely understood. One common way to
study this process is by deriving models that map be-
tween speech stimuli and the resulting brain responses.
The temporal response function (TRF) is one such model
that assumes that responses to speech are time-invariant
with magnitudes that are linearly related to the amplitude
of various speech features. However, such linear time-
invariant assumptions are sure to be suboptimal given
what is known about the brain. Here, we relax the lin-
ear time-invariant assumptions using a recently proposed
dynamically warped TRF model that can modulate both
the amplitude and timing of the TRF based on the current
and previous values of the stimulus feature of interest.
Doing this improved the ability to model EEG responses
to natural speech. This improvement was driven by the
dynamic TRF’s ability to account for the fact that larger
acoustic onset values tended to evoke larger and earlier
responses, a finding that is consistent with previous re-
search. This study validated the efficacy of the dynami-
cally warped TRF model and emphasizes the importance
of considering the timing of brain responses to natural
stimuli.
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Introduction
Speech is one of the most important signals in human life.
One way that researchers have attempted to understand how
the human brain processes speech is by modeling neurophys-
iological responses to natural speech. One common approach
involves fitting linear temporal response functions (TRFs) that
describe a mapping between speech features (e.g. an enve-
lope) and brain responses. However, this approach assumes
that only the amplitude but not timing of brain responses will
be modulated by the intensity of speech features. Although
this assumption may be applicable for responses at certain
stages along the neural pathway over certain time scales
(Boynton, Engel, Glover, & Heeger, 1996), there is evidence
indicating this assumption is suboptimal for modelling EEG
responses. One such piece of evidence is the finding that
auditory stimuli with higher intensity evoked responses with
shorter latencies (Beagley & Knight, 1967).

Recently, we showed that allowing a linear model to vary as
a function of the stimulus feature’s intensity leads to improved
prediction of unseen neural data (Drennan & Lalor, 2019). To
do this, we divided the speech envelope into different intensity
bins and fit separate TRFs for each intensity. However, this
approach was somewhat ad hoc given that it involved the se-
lection of a certain number of intensity bins, each with a width
that was not determined based on any particular principle.

An alternative approach would be to determine how the
TRF should be reshaped across stimulus feature intensity to

optimize EEG prediction accuracy. Indeed, a recent study
showed that taking such an optimization approach was use-
ful in dynamically warping TRFs based on the lexical surprisal
of words (Dou, Anderson, White, Norman-Haignere, & Lalor,
2024). In particular, a data-driven approach was used to fit
TRFs for individual words, with its amplitude and time latency
being modulated by word predictability. The results indicated
that words that are easier to predict tend to evoke earlier and
smaller EEG responses.

Here, we apply a similar approach to the speech acoustics.
In particular, we focus on acoustic onsets – defined as the
derivative of the broadband speech envelope, a feature that
has been used in several previous studies (Drennan & Lalor,
2019; Brodbeck, Hong, & Simon, 2018; Synigal, Anderson, &
Lalor, 2023). The idea is to model dynamic changes in the
amplitude and timing of the temporal response function with
the intensity of the acoustic onsets and, thus, to produce a
more accurate model of EEG responses to natural speech.

Methods
Our hypothesis is that larger acoustic onsets will evoke not
only larger but earlier responses (TRFs). We will test our hy-
pothesis by comparing the prediction accuracy between the
static (standard) TRF and the dynamically warped TRFs, and
by inspecting specific parameters in the dynamic TRF model.

Data

EEG Dataset We used a publicly available natural speech
EEG dataset to fit and test our model (Broderick, Anderson,
Di Liberto, Crosse, & Lalor, 2018). This dataset contains
EEG collected from 19 participants listening to 20 continu-
ous pieces of a narrative audiobook with each piece lasting
about 3 minutes. The Biosemi 128-channel EEG recordings
were rereferenced to the average data from two mastoid elec-
trodes, band-pass filtered (0.5 to 8 Hz), interpolated (if it was
too noisy compared with the surrounding channels, see (Dou
et al., 2024) for details), downsampled to 64 Hz, and z-scored.

Stimulus Feature The acoustic onset we used here was
calculated as the difference between adjacent samples along
the time axis of the broadband speech envelope, a feature that
has been used in several previous studies (Drennan & Lalor,
2019; Brodbeck et al., 2018; Synigal et al., 2023). Acoustic
onset values smaller than 1e-4 were discarded in the analy-
sis. The acoustic onset time series were z-scored.

Dynamically warped TRF

The static TRF (Crosse, Di Liberto, Bednar, & Lalor, 2016),
which can be formulated as r(t) = s(t) ∗ h(τ), assumes the
amplitude of the response, r(t), is linearly modulated by the
speech feature intensity s. In other words, h(τ) is a fixed lin-
ear kernel. The dynamically warped TRF, on the other hand,
transforms the TRF kernel along both amplitude and time axes
for each input. To do this, we first fitted a static TRF for the
acoustic onset time series s(t) with a time lag of 0-300 ms.
We then obtained its functional representation h(t) by repre-



senting the TRF weights as a weighted sum of Fourier bases,
as described in (Dou et al., 2024). This approach provides the
benefit of differentiable transformation on the TRF weights.
Then, we estimated transformation parameters of amplitude
scaling ai and time shifting bi for the ith input by convolving
two learnable kernels β1 and β2 with s(t), respectively:

ai = |∑
µ

β1(µ)s(ti −µ)+ γ1| (1)

bi = min(max(∑
µ

β2(µ)s(ti −µ)+ γ2,−0.1),0.1) (2)

where γ represents the y-intercept, ai was forced to be non-
negative and bi was limited between −0.1 and 0.1s. The pro-
cess of obtaining the final predicted responses r(t) can be
formulated as:

ri(t) =

{
aih(t − ti −bi) ti < t < ti + τmax

0 otherwise
(3)

r(t) = ∑
i

ri(t) (4)

where ti indicates the onset time of the ith non-zero value of
the acoustic onset and τmax indicates the maximum time lag
relative to time ti. The two convolution kernels had a length
of 10, and were optimized using gradient descent provided by
pyTorch (Paszke et al., 2019). τmax was set as 300 ms.

Statistics

The performance of the static and dynamic TRFs were com-
pared by assessing how accurately they could predict EEG
to unseen stimuli – where prediction accuracy was quantified
using Pearson’s correlation between the predicted and true
EEG responses for each channel. To correct for multiple com-
parisons when comparing the prediction accuracy of dynamic
and static TRF, we used a non-parametric cluster-level paired
t-test (right tailed), with 2048 permutations.

Result

As shown in Figure 1, prediction accuracy was significantly
improved around central scalp regions. On average across
the significant channels, the dynamic TRF improved prediction
accuracy significantly from 0.0284 to 0.0295. Please note:
these numbers reflect the prediction accuracy of unaveraged
EEG. As such, they are small in absolute terms, but highly
significant (Di Liberto, O’Sullivan, & Lalor, 2015).

Figure 2 (top) shows that the improved prediction accuracy
is driven by a negative correlation between amplitude scal-
ing and time shift (data shown are from one round of 5-fold
cross-validation). Figure 2 (bottom) visualizes the TRFs cor-
responding to the circled dots in Figure 2 (top). The averaged
correlation across all rounds of cross-validation between am-
plitude scaling and time shift is -0.145.

Figure 1: Channel-wise improvement of prediction accuracy.

Figure 2: Correlation between amplitude scaling and time
shift, and visualization of dynamic TRFs.

Discussion

In this study, we show that a dynamic TRF can improve the
prediction accuracy of EEG when using acoustic onset as the
predictor. Evidence was also found showing a negative mono-
tonic relationship between the amplitude and time latency of
the responses to acoustic onset. Given the challenging signal-
to-noise ratio of EEG data, this improved prediction accuracy
has important implications for future research on how the hu-
man brain processes speech, and how such processing might
differ in certain populations (Federmeier, 2022).

Slightly different from what was shown previously (Drennan
& Lalor, 2019), here the channels where improvement is sig-
nificant concentrate more around central electrode sites in-
stead of frontal scalp. One potential reason is the correlation
between semantic features and acoustic onset, which may
mean that the acoustic onset TRF also reflects brain activ-
ity related to the linguistic content of the speech. Future work
will examine how to disentangle these contributions.
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