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Figure 1: Qualitative comparison of reconstruction methods on simple (left) and complex (right) stimuli across both vision and
mental imagery experiments. Reconstructions selected for the figure are the best samples for each stimulus as assessed by
quantitative performance on a set of image feature metrics.

Abstract
Fueled by recent leaps in generative AI and the release
of the Natural Scenes Dataset (NSD), researchers have
been able to reconstruct seen images from human brain
activity with unprecedented accuracy. If it were possi-
ble to extend these visual decoding methods to mental
imagery, they could potentially be useful in clinical set-
tings, e.g., by introducing new diagnostic tools for pa-
tients with traumatic brain injuries and mental health dis-
orders, or by providing a communication channel to pa-
tients with locked-in syndrome. We tested the application
of several recent vision decoding methods to brain ac-
tivity collected during a special NSD scanning session in
which subjects imagined a small set of memorized target
stimuli. We show that most of these methods general-
ize robustly to mental imagery, yielding reconstructions
of mental images that human raters consistently identify
as corresponding to the target stimuli in a forced-choice
task. Interestingly, we find that—by this identification
accuracy measure—reconstructions of imagined natural
scenes are of slightly better quality than reconstructions
of much simpler seen stimuli of bars and crosses. Fi-
nally, we observe a strong correlation between stimuli
that reconstruct better across vision and imagery trials,
suggesting that further improvements in vision decoding
methods will afford improvements to mental imagery de-
coding.
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Introduction
A persistent challenge in modern medicine is diagnosing and
treating disorders whose only symptoms are changes in pri-
vate conscious experiences, including chronic pain, mental
health disorders, and unresponsive patients with traumatic
brain injuries. There are broad areas of research that would
benefit tremendously from brain decoding methods that could
transform a patient’s internally generated visual experience
into a picture that is viewable by external observers.

The open releases of deep learning models such as
CLIP (Radford et al., 2021) and Stable Diffusion (Rombach,

Blattmann, Lorenz, Esser, & Ommer, 2021), as well as large-
scale functional magnetic resonance imaging (fMRI) datasets
like the Natural Scenes Dataset (NSD) (Allen et al., 2022),
where tens of thousands of images were shown to human
subjects, has sparked the rapid developments of vision de-
coding methods that can reconstruct seen images from brain
activity with impressive accuracy (Takagi & Nishimoto, 2023;
Ozcelik & VanRullen, 2023; Scotti et al., 2023; Kneeland,
Ojeda, St-Yves, & Naselaris, 2023b, 2023c, 2023a). However,
to realize the utility of such approaches in clinical settings, de-
coding methods must be able to handle cases of mental im-
agery.

While mental imagery exhibits lower signal-to-noise ratios
(SNR) (Roy, Breedlove, St-Yves, Kay, & Naselaris, 2023) than
vision, the encoding of seen and mental images in visual cor-
tex is similar enough (Naselaris, Olman, Stansbury, Ugurbil, &
Gallant, 2015) for vision to serve as a useful starting point for
decoding mental imagery (St-Yves, Breedlove, Kay, & Nase-
laris, 2023).

Methods
We examine a small unreleased extension of NSD, hereby re-
ferred to as NSD-Imagery, in which each NSD subject com-
pleted an additional scanning session of mental imagery tri-
als. All of the scanning and experimental procedures for NSD-
Imagery remained the same as the main experiment in (Allen
et al., 2022). The target stimuli set for this dataset consists
of 6 simple stimuli (bars and crosses), and 6 complex stimuli
(5 natural scenes and 1 artwork). These stimuli were pre-
sented 8 times during an initial set of vision runs, and in sep-
arate runs, the subjects were asked to imagine the stimuli
16 times each. We utilized these data to test the general-
ization capabilities of several contemporary vision decoding
methods—which have already been fine-tuned for the NSD
subjects—in the domain of mental imagery.

We applied vision decoding methods MindEye1(Scotti et
al., 2023), MindEye2 (Scotti et al., 2024), Brain Diffuser
(Ozcelik & VanRullen, 2023), and the Brain-Optimized Infer-
ence (BOI) reconstruction enhancement algorithm (Kneeland
et al., 2023a) to the vision and imagery trials in the NSD-
Imagery dataset. We evaluate the BOI algorithm using both
the MindEye1 and Brain Diffuser as base methods.



Results
Figure 1 shows selected reconstructions of seen and mental
images. Mental image reconstructions are qualitatively fur-
ther from the target stimuli than seen image reconstructions,
but capture many of the essential details of the target stim-
uli. Interestingly, simple stimuli reconstructions demonstrate
strong structural coherence but deviate in semantic detail due
to the naturalistic priors baked into the reconstruction meth-
ods, which impede generalization to new, out-of-distribution
stimuli.

Figure 2: Reconstructed image identification. The percent-
age of stimuli that are correctly identified in a 2AFC task (x-
axis) across percentiles of the sorted data (y-axis) by 266
human raters (averaged over all methods; null distribution in
gray) for each stimulus type and modality (colored curves).
Less area under the curve is better.

To quantify the quality of seen and mental image recon-
structions in a setting relevant to our clinical motivations, we
recruited human raters (n=266) to perform a 2-alternative
forced choice (2AFC) judgment about whether a reconstruc-
tion was more similar to a target stimulus image than a ran-
domly selected reconstruction of a different stimulus. In Fig-
ure 2, we observe that reconstruction of seen naturalistic im-
ages had the highest probability of being correctly identified on
these trials, and reconstructions of imagined natural scenes
were as roughly as likely to be correctly identified as recon-
structions of seen simple stimuli. Given that all decoding
methods were optimized for reconstructing seen naturalistic
images, our results suggest that decoding accuracy is more
reliant on the match between training and test image distribu-
tions than on the complexity of the stimuli or whether the im-
age was seen or imagined. Thus, expanding training datasets
to include a wider variety of stimuli could enhance reconstruc-
tion performance for these simple stimuli.

In a separate task of our online experiment, human raters
were simultaneously presented with seen and mental image
reconstructions of a target stimulus and used a set of sliders

Figure 3: Correlation of seen and mental image reconstruc-
tion quality. Average similarity scores of seen image recon-
structions (x-axis) and mental image reconstructions (y-axis).
Plotted for each reconstruction method (color) and each stim-
ulus (shapes; larger bold shape is the mean similarity across
all stimuli), lines are the principal component of the variance
for the joint similarity distribution (dashed line at unity indicates
equal similarity).

to indicate the similarity of each reconstruction to the target
stimulus. Similarity scores of matched seen and mental im-
age reconstructions (Figure 3) were significantly correlated.
Averaging all ratings for each ground truth image and pooling
data points across the 4 methods that generalize robustly to
imagery (excluding MindEye2), the correlation between simi-
larity for seen and mental image reconstructions was 0.56 (p
< 0.001, n=48). This indicates that, on average, the similarity
of reconstructed mental images to ground truth was more than
half of the similarity of the reconstruction of a matched seen
image. Collectively, these results suggest that improvements
to decoders of seen images will likely translate to improve-
ments in decoding matched mental images.

Conclusion
We show that current vision decoding methods can robustly
generalize to instances of mental imagery, opening the door
to potential clinical applications that include diagnostics and
communication for cognitively impaired or unresponsive pa-
tients. However, current research has several limitations, in-
cluding the relatively small size of mental imagery datasets
hindering domain-specific training, and the difficulty of gen-
eralizing these methods to new subjects with distinct neural
codes. The MindEye2 initiative shows promise in multi-subject
pretraining (Scotti et al., 2024), but underperforms in mental
imagery tasks, indicating the need for further research in this
space. As neuroimaging technologies advance toward decod-
ing private visual experiences, ethical considerations demand
that brain data be carefully protected and that any companies
or organizations collecting such data be transparent with their
use.
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