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Abstract
The Brain-Score benchmark ranks how well DNNs model
human “core object recognition” based on how well
DNNs predict a wide range of neural and behavioural
data. Here we focus on the Brain-Score predictions of
IT neural activation and show that good predictions are
not a good measure of DNN-IT alignment. We carry out
a controlled experiment using the data from Majaj et al.
(2015) to understand which visual features drive DNN
brain predictions. We show that a good proportion of the
neural predictivity score from the dataset are based on
the backgrounds of images rather than the objects them-
selves. This reflects a more general problem of making
claims regarding DNN-brain alignment based on correla-
tional studies.
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A key observation taken to support DNN-brain alignment in
the domains of vision and language is that DNNs can predict
brain responses to photographs, text, and speech waveforms
better than all alternative models. Indeed, predictions some-
time approach (and even reach) noise ceilings, that is, DNNs
predict brain responses as well as possible given the reliabil-
ity of the brain recordings. This is taken to indicate that DNNs
and brains learn similar visual and language representations
for the sake of visual and language processing tasks such as
object recognition and language comprehension.

Here we focus on the alignment between DNNs and vision
in inferotemporal (IT) cortex. More specifically, we focus on
the neural predictivity measure as implemented in the popu-
lar Brain-Score benchmark that assesses how well DNNs pre-
dict neural activation patterns along the ventral visual pathway
(Schrimpf et al., 2018, 2020), culminating in IT. Brain-Score
is used to rank DNNs in terms of how well they model “core
object recognition”. That is, the ability to quickly recognise
objects despite substantial variation in appearance, such as
changes in pose, context, and lighting conditions.

Brain-Score includes 4 datasets of IT neural responses to
images taken from different studies. For two of the studies,
macaques were presented with multiple exemplars of objects
taken from eight categories in various random poses super-
imposed on a random background (Majaj, Hong, Solomon, &
DiCarlo, 2015; Sanghavi & DiCarlo, 2020), as illustrated in

Figure 1: Some example images used in a series of studies
to predict IT neural responses from DNN activations. In the
dataset used by Majaj et al. (2015), there were eight different
categories of objects, each consisting of 8 exemplars. Each
exemplar was presented from a variety of viewpoints and on
a variety of backgrounds. For illustrative purposes, this image
is taken from Cadieu et al. (2014), who used a very similar
dataset.

Figure 1.
The two additional studies (Sanghavi, Murty, & DiCarlo,

2020; Sanghavi, Jozwik, & DiCarlo, 2020) included images
that emphasized more naturalistic viewing conditions, but in
all cases, the Brain-Score analysed these datasets as if they
were observational. That is, DNNs were assessed in their
ability to predict neural responses across all images, with no
attempt to assess the impact of any manipulations, such as
pose or background.

There is a problem with using predictions on observational
datasets to draw conclusions regarding the mechanistic simi-
larity between DNNs and IT. That is, the predictions in Brain-
Score are correlational, and correlation does not imply a sim-
ilarity in representations or mechanism. For example, hu-
mans primarily rely on shape when identifying objects (e.g.,
Biederman & Ju, 1988), whereas most DNNs rely on texture
(Geirhos et al., 2018). This reflects the fact that shape and tex-
ture are correlated in images, and humans and DNNs rely on
different correlated features. In the same way, good brain pre-
dictions might reflect confounds (e.g., texture representations
in DNNs predicting shape representations in cortex). This am-
biguity weakens any conclusions that can be drawn from these
predictions. Indeed, if confounds are strong enough, it would
be possible to get perfect brain (or behavioural) predictions
between two systems that encode and represent completely
different visual features.

To make stronger conclusions regarding DNN-brain repre-
sentational and mechanistic alignment, it is necessary to un-
derstand which visual features drive DNN brain predictions
and compare them to the features that drive biological per-



Figure 2: Example of pairs of images in the ‘Control’ and
‘Swap’ conditions. The same image is presented to the DNN
and monkey in the Control condition. In the Swap condi-
tion, the model is presented with the exact same exemplar
as viewed by the monkey (viewed from the exact same view-
point) but on a different background.

ception and object recognition. In the case of Brain-Score,
the question is whether the features that drive good predic-
tions of neural data are like the features that drive core object
recognition in macaques and humans. This requires an ex-
perimenter to systematically manipulate properties of images
to test hypotheses regarding the visual features in DNNs that
drive their predictions.

Fortunately, the availability of the Majaj et al. (2015) neu-
ral dataset that depicts objects in random poses on random
backgrounds allowed us to run an experiment to test a simple
hypothesis, namely, whether DNNs make predictions based
the objects themselves or whether the random backgrounds
also contribute to predictions. This latter outcome would un-
dermine the claim that neural predictivity provides a measure
of core object recognition, and more generally, highlight the
danger of inferring anything about representational or mech-
anistic DNN-brain alignment based on predicting neural acti-
vation using observational data. This dataset includes neural
recordings from 3200 images taken from 8 categories, with 8
exemplars per category and many different poses of each ob-
ject, as in Figure 1. For each exemplar there is also a subset
of images that depict the same objects in a canonical pose but
in different backgrounds. This allowed us to compare predic-
tions when the same objects were superimposed on the same
background compared to when they were superimposed on
different backgrounds. To the extent that predictions on this
dataset reflect core object recognition, the background should
have little or no effect on their predictions.

We trained the linear regression model on all the images in
non-canonical poses as well as half of the images in canonical
poses using the code from Brain-Score. With the remaining
set of 168 image pairs, we compared the level of prediction of
various DNNs when the DNNs and the macaques were pre-
sented with the same images in same (control) or different
(swap) backgrounds conditions, as illustrated in Figure 2.

The results are shown in Figure 3. The critical finding is that

Figure 3: Neural predictivity scores in the Control and Swap
conditions for four DNNs. Each panel shows the raw r2 score
(without scaling the scores for ceiling) for the held-out test im-
ages. This score is computed using the procedure described
in Schrimpf et al. (2018) and captures the amount of variance
in neural responses explained by the DNN activations.

predictions were reduced by more than half when the back-
grounds mismatched, showing that the backgrounds played
an important role in the brain predictions in this study. Note
that neural predictivity studies are specifically designed with
the intention that the score reflects core object recognition.
This is why, when testing the regression model, the training
and test images for each category have the same object but
different (randomly chosen) background. However, our results
indicate that, despite this manipulation, a large proportion of
the prediction is performed on features that are not even part
of the object in the scene.

Furthermore, note that there may well be other confounds
in these images, and it is not safe to assume that the predic-
tions obtained in the Swap condition reflect an updated esti-
mate of core object recognition. For example, the prediction
in the swap condition may reflect the similar textures of the
two objects, and indeed, as noted above, past research has
shown that many models primarily rely on texture to classify
them (Geirhos et al., 2018). That is, it is possible that the pre-
dictions are simply be function of overlapping high frequency
features, rather than features that are typically used by hu-
mans to perform object recognition.

We were able to assess the impact of the background
confound because of the structure of this particular image
dataset. But similar confounds are likely to be present in any
dataset composed of high-dimensional images. This includes
the other three IT datasets included in Brain-Score, and in-
deed, any behavioural or brain benchmark that assesses
DNN-brain alignment using observational image datasets.
Consistent with the possibility that confounds are driving pre-
dictions in observational studies, when DNNs are assessed
on their ability to account for psychological experiments than
manipulate independent variables to test specific hypothe-
sis, DNNs tend to do extremely poorly (Bowers et al., 2023),
and other measures being used to assess DNN-brain align-
ment, such as RSA, may be similarly prone to exaggerating
scores due to confounds (Dujmović, Bowers, Adolfi, & Malho-
tra, 2022).

Going forward, it is important to run experiments that ma-
nipulate independent variables to determine which features



drive good brain predictions and consider whether these fea-
tures align with the features that drive human core object
recognition. Experimental versions of Brain-Score will provide
a more accurate assessment of DNN-Brain alignment.
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