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Abstract: 

Human neuroscience has revealed that neuroimaging 
measures and neural activity in the amygdala encodes a 
wide array of variables ranging from threat, salience, 
valence, and stimulus intensity. Although much has 
been learned about amygdala function, an overarching 
account of amygdala processing remains elusive. Here 
we use a combination of human neuroimaging, 
computational models of visual processing, and self-
report measures of emotional experience to develop and 
validate encoding models that predict patterns of 
amygdala response acquired with fMRI during movie-
viewing. When tested on naturalistic emotional images, 
we found that amygdala encoding models predicted 
ratings along the dimension of valence. Moreover, we 
found that the encoding models could be paired with 
deep generator networks to synthesize artificial stimuli 
that specifically engage the amygdala and anatomically 
defined amygdala subregions. These findings establish 
an approach for advancing our understanding of 
amygdala function by identifying how the amygdala 
transforms rich sensory inputs into low-dimensional 
representations relevant for behavior. 
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Introduction 

The amygdala is a subcortical cluster of nuclei in the 
medial temporal lobe that receives multimodal inputs 
from sensory cortices, including the ventral visual 
stream. Due to its connectivity and influence on multiple 
brain systems, it is thought to function as an integrative 
hub involved in processing the salience, valence, and 
threat value of stimuli (Janak & Tye, 2015; LeDoux, 
2000; Ohman & Mineka, 2001; Pessoa & Adolphs, 
2010). Through its widespread connections, the 
amygdala is thought to detect events of biological 
significance and coordinate autonomic, skeletomotor, 
and cognitive responses to promote survival (Sander et 
al., 2003). Despite numerous theories on amygdala 
function, how exactly the amygdala accomplishes this 
remains largely debated. 

Here we aim to further our understanding of 
amygdala function by isolating the sensory-evaluative 
components of amygdala processing. To this end, we 
used deep convolutional neural networks as a 

computational model of the ventral visual stream 
(Yamins et al., 2014) and examined whether high-
dimensional representations from a convolutional 
network trained to classify emotional situations (Kragel 
et al., 2019) contain information sufficient to predict 
amygdala responses to naturalistic videos. 

Methods 

Development and Validation of Amygdala 
Encoding Models 

We developed a set of linear encoding models that 
predict patterns of activity within the amygdala in 
response to naturalistic stimuli. To accomplish this, we 
extracted visual features from the every fifth frame of 
the movie from the penultimate layer of a deep 
convolutional neural network (Kragel et al., 2019). This 
layer was selected because the majority of inputs to the 
primate amygdala originate in inferotemporal cortex, as 
opposed to earlier stages of visual processing (Kravitz 
et al., 2013). We convolved these features to match the 
hemodynamic response of the BOLD data acquired of 
participants viewing the same movie from the 
Naturalistic Neuroimaging Database (Aliko et al., 2020). 
We then used partial least squares regression (Wold et 
al., 2001) to obtain regression coefficients (beta 
estimates) for each subject for the encoding models, 
with the time-matched features from the movie as the 
predictor variable and the observed BOLD activations 
masked by the voxels of the amygdala as the outcome 
variable.  

We fit separate models for each participant and used 
5-fold cross validation to estimate model performance. 
Voxel-wise performance was computed as the 
correlation between predicted activations from the 
encoding models and the observed activations from 
each subject’s BOLD data. We also validated the 
predicted activations from our encoding models using 
naturalistic images from standardized affective image 
databases, the International Affective Picture System 
(Bradley & Lang, 2007) and the Open Affective 
Standardized Image Set (Kurdi et al., 2017). We 
predicted that encoding models would respond more 



strongly to valenced images, as is commonly observed 
in human amygdala responses (Lindquist et al., 2016). 

Generating Artificial Stimuli that Engage 
Specific Regions of Interest 

Because the amygdala is not a single functional unit, 
we posited that our amygdala encoding models will 
have some degree of functional selectivity. Accordingly, 
we generated artificial stimuli that are optimized for the 
encoding models of different regions and subregions of 
interest. Using methods previously demonstrated in the 
visual cortex (Bashivan et al., 2019; Nguyen et al., 
2016; Wang & Ponce, 2022), we used a deep generator 
network trained on ImageNet (Nguyen et al., 2016) and 
aimed to maximize activation in the amygdala encoding 
models. Responses spanning the entire amygdala (252 
voxels) and amygdala subregions (the basolateral 
complex (LB), the centromedial nucleus (CM), the 
superficial (SF) group, and the amygdalostriatal 
transition zone (AStr); 29 to 178 voxels) were selected 
as the objective for activation maximization. Stimuli 
were also generated for encoding models of the visual 
cortex (VC; V1-V3) and inferotemporal cortex (IT) for 
each subject as controls. Optimization was performed 
using an evolutionary algorithm (Wang & Ponce, 2022), 
and artificial stimuli were generated with a random 
starting seed for each image. 

Results 

Human Amygdala Activity Encodes Valence 

Figure 1: Predicted activation of amygdala voxels by 
encoding models; FDR threshold q < .05. 

We found that the encoding models robustly predict 
amygdala responses to naturalistic stimuli. Voxel-wise 
t-tests showed that the mean performance of encoding 
models was well above chance in the amygdala (Figure 
1). A mixed effects model revealed that predictions of 

the average amygdala response was above chance (𝛽̂ 

= .049, SE = .0053, t53 = 9.27, p < .001), and that there 
were marked differences in performance across 

amygdala subregions (∆BIC = 23.5, Likelihood Ratio = 
36.5, p < .001).  

In response to naturalistic stimuli from standardized 
affective image databases, we found relationships 
between predicted activations from our amygdala 
encoding models and ratings of valence (IAPS: t = 2.86, 
p = .010, d = 0.64 and OASIS: t = 2.71, p = .014, d = 
0.61) but not for arousal (IAPS: t = 1.35, p = .193, d = 
0.30 and OASIS: t = -0.69, p = .496, d = -0.16) or the 
interaction between the two (IAPS: t = 1.10, p = .284, d 
= 0.25 and OASIS: t = 2.40, p = .027, d = 0.54), after 
controlling for low-level visual features.  

Amygdala Encoding Models Capture 
Functionally Distinct Subregions. 

We found that artificial stimuli selectively engaged 
encoding models of the targeted brain regions. A multi-
way classification revealed that stimuli generated to 
activate each region and subregion were distinct from 
one another, with the exception of LB and SF (6-way 
accuracy = 71.7 ± 1.7%; Figure 2).  

Figure 2: Hierarchical clustering and confusion 
matrix resulting from a 7-way classification of predicted 

activations in response to artificial stimuli.  

Discussion 

Our results show that convolutional neural networks 
can be used as a proxy for the ventral visual stream to 
accurately model and predict activity in the amygdala 
and its subregions in response to complex visual 
stimuli. Different amygdala subregions encode distinct 
sets of visual features, which can be recombined to 
predict variation in self-reported affect. These findings 
suggest that the amygdala functions to transform 
features extracted by the ventral visual stream to 
produce representations that predict the valence of 
emotional experiences.  
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