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Abstract

Neurons are morphologically diverse, but the evolution-
ary advantage of this is unclear. In addition, neurons
spike and exploit time in their computations, outputs
and learning. However, most work on artificial neu-
ral networks (ANNs) abstract over these details and re-
strict learning and adaptation to the spatial parameters
of weights and biases. Even when time is introduced in
ANNs, it is introduced through recurrency at a fixed time
step (synchronous computation), and again, learning is
restricted to weights and biases. Here we adapt weights,
time constants and delays in an evolutionary context in
an attempt to gain some insights into why neurons are
so diverse. We show that nature might have evolved a
morphologically diverse set of neurons to i) map spatio-
temporal spike trains and ii) ease the evolutionary search
for high performing solutions.
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Introduction

Through the course of evolution, nature has produced a di-
verse set of neurons to meet the computational demands fac-
ing adapting organisms, with the mammalian brain evolving
about 5,000 types (Yao et al., 2023). In addition, neurons uti-
lize spike-timing in their computations (Lorenzo, Chen, & Vic-
tor, 2009; Birznieks & Vickery, 2017), with axonal transmis-
sion speeds varying by over an order of magnitude (Stoelzel,
Bereshpolova, Alonso, & Swadlow, 2017) and neuronal time
constants by almost two orders of magnitude (Beggs, Jr., Mc-
Gann, & Brown, 2000). This diversity is relevant to various
problems, like sound localization by barn owls (Carr & Konishi,
1988), and it may also contribute to in-life learning of tempo-
rally correlated parameters, through myelin plasticity (Lakhani
et al., 2016). Despite these striking observations, most ANNs
abstract over these features and restrict learning and compu-
tations to the spatial parameters of weights and biases.

Recently, and in the context of spiking neural networks,
research has investigated the benefits of in-life learning of
single temporal parameters (Perez-Nieves, Leung, Dragotti,
& Goodman, 2021; Hammouamri, Khalfaoui-Hassani, &
Masquelier, 2023; Grappolini & Subramoney, 2023). Here,
we expand on this work by co-adapting weights with two tem-
poral parameters, namely time constants and delays, in an
evolutionary context to solve a diverse set of spatial-temporal
problems. From these investigations, we show the limitations
of weight-only solutions, demonstrate the significance of
temporal parameters like delays, and show that delays and
time constants alone can learn all fundamental logic gates
when the weights are fixed.

Weights are neither sufficient nor necessary in
mapping spatio-temporal logic problems

Spatio-temporal logic problems offer a tractable context for in-
vestigating the properties of various neuronal parameters and
their role in neural computation across a wide range of input-
output mappings. The problems include a temporal dimension
embodied in the input spike train as shown on the x-axis of
Figure 1a. For example, the first entry on the x-axis shows
001(NO) and 011(YES) for the input encodings, which means
that the spike trains might take the form (........|..........) for NO,
and (.......||..........) for YES, and these inputs are applied to all
combinations of each logic problem. Conversely, the output
code is simply the spike count from the output-layer neuron.
The solutions to these problems were evolved in networks that
had two input units, four hidden units and one output unit.

Figures 1a&1b show the number of generations needed to
reach a perfect solution (zero loss) for a given combination
of i) co-evolved parameters, ii) input-output encoding, iii) logic
problem type, and iv) weight clipping range. The weight clip-
ping range is a hyperparameter that is used during evolution
to restrict the values that a parameter, in this case weights,
can take. We use [-1, 1] mV and [2, -2] mV clipping ranges as
they exemplify networks that are restricted to values below or,
below and above the threshold of 1.1 mV. Each grid pattern
represents an average of 5 trials and each trial involves pop-
ulations with about two million solutions. The number of gen-
erations was employed as an indirect measure of the ease of
finding a perfect solution. Thus, from an evolutionary perspec-
tive, fewer generations suggests that co-evolving the given set
of neuronal parameters increases the chances of survival of
an individual relative to other parameter sets. Each trial in-
volves running the evolutionary algorithm for twenty genera-
tions.

A close inspection of Figures 1a&1b shows that weights
alone cannot solve all logic problems. Weights are a spatial
adaptation parameter, and when faced with a temporal input
(a spike train), we observe that weight-only mutated networks
have the lowest performance. Conversely, it seems that the
biggest contributors to performance are delays. In essence,
delays manipulate spike times, meaning that they possess
the ability to temporally restructure the incoming presynap-
tic spike trains to meet a target postsynaptic activity pattern.
Thus, when combined with other parameters, like weights or
time constants, they can greatly enhance the ability of neu-
ral networks to successfully map input spike trains to diverse
output encodings. The usefulness of delays in this context
helps to explain why there is a performance increase when
time constants are co-trained with weights (although slight for
the [-1, 1] mV weight clipping case). This performance in-
crease is possible because weights and time constants can
simulate delays as shown in Figure 1c. This result is achieved
through the integration of postsynaptic potentials of different
time constants, most often a slow excitation and a fast inhi-
bition. For Figure 1c, the left image is a spiking raster plot,
which shows the spike arrival times (arrow heads) and spiking



Figure 1: Effect of the input-output encoding and the co-evolved parameters on the search speed and availability of solutions
for various logic problems. This is conveyed through the number of generations needed to find a solution, where grey means
no solutions found. This is performed for A) [-2, 2] mV and B) [-1, 1] mV weights clipping range during evolution. C) WTc only
solutions can simulate delays. Left, the spiking plot for a sample XNOR problem and right, a zoomed-in view of the voltage traces
with their sum. Abbreviations code, W: weights, Tc: time constants, D: delays.

times (blue dots) for each neuron in the network, including the
input neurons, namely 1 and 2. The purple-dashed rectangle
emphasizes a case where neuron 6 spikes one millisecond
after the spikes from neurons 1 and 2 arrive. This process is
enlarged in the right image of Figure 1c, where the voltage
traces of each synapse are shown beside their sum. As seen,
the sum of a slow excitation and fast inhibition is a rising po-
tential that fires 1 ms after the arrival of the presynaptic spikes.
Finally, it should be noted that delays and time constants can
solve all logic problems as illustrated by the middle image of
Figure 1b.

Our findings highlight the important role that adaptive tem-
poral parameters play in solving simple spatio-temporal prob-
lems, and that their complex interactions alter the nature of
the solutions obtained in the different co-adaptation condi-
tions. This not only provides a possible explanation for why
the brain evolved morphologically diverse neurons that can
exploit the fine temporal structure of spike trains, it also high-
lights the problem of ignoring the adaptive role that time plays
when building neural network models of brain function, as is
the standard with current ANNs that rely on rate coding.
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