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Abstract: Link to the sound demo page. 

Auditory periphery encodes sound stimuli into spike 
trains and interacts with the higher auditory system; 
however, decoding activities in the auditory periphery 
remains under-explored in computational neuroscience. 
In this study, we aim to reconstruct the acoustic stimuli 
from the spike trains they elicit. To this end, the decoding 
models must handle the stochastic responses of 
auditory nerve fibers (ANFs) and compensate for the 
adaptations by the highly non-linear and bidirectional 
interactions in the pathways. We proposed a deep 
artificial neural network (DANN)-based speech synthesis 
models to decode the spike trains of ANFs’ responses. 
Our model achieved averaged PESQ and SSIM scores of 
4.0969 and 0.9225, respectively. Furthermore, in the 
generalization test, our model performs well on unseen 
datasets, including VCTK, MCDC8, and excerpts of 
single musical instruments. In conclusion, our model 
reconstructs speech with high fidelity from neuronal 
spiking activities in human peripheral auditory pathways, 
and the model effectively compensates for any nonlinear 
and dynamical Acoustic Reflex (AR) and Medial 
OlivoCochlear Reflex (MOCR) effects. 
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Introduction 

Auditory periphery encodes sound stimuli into spike 
trains and interacts with the higher auditory system 
through afferent and efferent pathways. Various 
computational models for the auditory periphery have 
been constructed (Meddis, Lecluyse, Clark, Jürgens, 
Tan, Panda, & Brown, 2013), and the output at the level 
of auditory nerve fiber (ANF) is referred to as the 
auditory neurogram, which consists of the simulated 
ANFs’ spike counts across different channels. ANFs 
have been shown experimentally to exhibit phase-
locking ability to sound stimuli below a few kHz (Meddis 
& Hewitt, 1991). Thus, the auditory neurograms contain 
place- and time-coded information. In this study, our 
goal is to reconstruct the acoustic stimuli from the spike 
trains of ANFs. 

Reconstructing sound waves from peripheral auditory 
activities was first described in an abstract (Rudnicki, 
Zuffo, & Hemmert, 2012). Their decoding technique 
was Multi-Layer Perceptron (MLP). They developed a 
two-stage algorithm to reconstruct high frequency 
signals. 1) Spike trains were converted to a 
spectrogram by 51 MLPs. 2) Spectrogram was 
transformed to an acoustic signal using an iterative 
method. Recently, Liu, Stohl, Lopez-Poveda, & 
Overath(2024) also developed a two-stages decoding 
model by first using neural networks to convert peri-
stimulus time histogram of simulated ANFs to acoustic 

features, and then recovering sound via WORLD 
speech synthesizer (Morise, Yokomori, & Ozawa, 2016). 

The aforementioned models heavily rely on traditional 
vocoders which do not take neurograms as their input, 
and suffer from some other limitations (Paul, Pantazis, 
Stylianou, 2020). In the present research, we aim to 
reconstruct the sound stimuli directly from auditory 
neurograms and believe that this approach may have 
broad applications such as hearing loss simulation. 

Datasets and Methods 

Auditory neurogram generation 

Auditory neurograms were computed by Meddis (2013) 
Matlab Auditory Periphery (MAP) with the normal 
hearing condition. The MAP simulated thirty thousand 
ANFs, which is the number of ANFs in the normal 
human ear, at high-, medium-, and low-spontaneous 
firing rates (H-, M-, L- SRs). The ANFs received input 
from 26 cochlear filters with characteristic frequencies 
(CFs) between 70 and 8,000 Hz, and the filters were 
equally spaced on the Equivalent Rectangular 
Bandwidth (ERB) scale. The MAP also simulated the 
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Fig. 1. Overview (Time duration = 200 ms) 
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Acoustic Reflex (AR) and Medial OlivoCochlear Reflex 
(MOCR) in the efferent pathways. The stimuli consisted 
of 90 minutes of speech from the LJSpeech dataset and 
were presented at the 70-dB sound pressure level when 
computing the ANFs' responses. The spike trains 
produced by the ANFs were sampled at 22.05k Hz. The 
max attenuation levels of AR was 20dB with 10ms 
latency. For MOCR parameters, MOCR was with 10ms 
latency and with no tonic attenuation. The spiking rate 
threshold of MOCR was 65 spikes/s on HSR 
neurograms. The lowest level of MOCR attenuation was 
above -35 dB. 

Preprocessing and Training Setting 

The simulated normal-hearing ANFs’ activities with all 
three SRs were summed into 26 channels per SR to 
form of the neurograms. Thus, the neurograms had 
limited spectral and relatively good temporal resolutions 
and were also affected by AR and MOCR adaptations. 

Decoding model: NeuroDiff 

Here, we proposed NeuroDiff, a diffusion DANN-based 
vocoder models (Ho, Jain, & Abbeel, 2020), to 
reconstruct the sound stimuli from the spike trains of 
ANFs’ responses. The proposed models had 
neurograms as input and raw waveform as output. 
Sampling rates and depth bits of this system were at 
22,050 Hz and 16-bit, respectively. The loss function of 
our NeuroDiff model was L1-distance. 

Evaluation Metrics 

To evaluate the performance of proposed model, the 
objective metrics were Structural Similarity Index 
Measure (SSIM), Multi-Resolution Short-Time Fourier 
Transform (STFT), and Mean Square Error (MSE) 
between the spectrograms of original and reconstructed 
signals, and Perceptual Evaluation of Speech Quality 
(PESQ). Spectral Convergence (SC) was for the 
accuracy of phase reconstruction and computed 
between the original and reconstructed signals. STFT 
was chosen to address the fine-structure of synthesized 
waveforms. SSIM was chosen to address envelop 
accuracy. PESQ was computed to measure the overall 
speech quality. 

To address the over-fitting problem, we tested the 
generalizability of our model by unseen stimulus. 
Therefore, we prepared test sets, which have four types 
of stimulus, including unseen British 
speech of female speaker ‘s5’, in 
another dataset, VCTK, Mandarin 
speech (MCDC8 dataset), and 

excerpts of single musical instruments in Medley-solos-
DB, e.g. piano for evaluating acuity of formants 
structure and violin for testing the reconstruction 
accuracy of the envelope and vibrato. Twenty samples 
were selected for testing from all the datasets. 

Discussion 

We proposed NeuroDiff model, which is the first model 
that solved the sound reconstruction problem with high 
fidelity from auditory neurograms. NeuroDiff model can 
compensate the non-linear effect by adaptation by hair 
cells, AR and MOCR in the auditory pathways. 
According to the SSIM and STFT scores in Table 1, our 
model can generate sound with acuity fine-structure of 
temporal-spectral information, and compensate the 
non-linear effect. Therefore, we proposed the first 
model that solved this long-standing unresolved 
problem in computational auditory neuroscience. 
Moreover, according to the generalization test results, 
NeuroDiff model still has good generalizability on 
unseen datasets. 

Conclusion 

Our NeuroDiff model can reconstruct speech with high 
fidelity from neuronal spiking activities in human 
peripheral auditory pathways. Despite the limited place- 
and relatively good time-coded information and 
dynamic adaptations in spike trains of ANFs, the 
sounds reconstructed using NeuroDiff models still 
preserve the speech without noticeable noise or 
artifacts. Moreover, our NeuroDiff model can effectively 
compensate for any nonlinear and dynamical AR and 
MOCR effects. 

 

 

 

 

 

Table 1: Results of test set and generalization test. ↑ 
indicates the higher the better, while ↓ indicates the 
lower the better.  

Model NeuroDiff 

Test-sets 
LJSpeech VCTK MCDC8 Medley-solos-DB 

Test-set British s5 20 samples piano-test violin-test 

SSIM ↑ 0.9225 0.8693 0.9296 0.7687 0.8668 

MSE ↓ 0.0021 0.0047 0.0052 0.0171 0.0144 

STFT ↓ 0.9518 1.8579 1.8997 2.3945 1.9829 

PESQ ↑ 4.0969 3.5433 3.7178 -   - 

SC ↓ 0.1911 0.4925 0.6563 1.4091 2.1022 
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