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Abstract
Some images are more memorable than others, but the
underlying neural mechanisms of memorability are not
fully understood. This study investigates how the hu-
man brain processes images based on their memorabil-
ity using fMRI responses to natural images by employ-
ing advanced deep neural network (DNN) and generative
adversarial network (GAN) models. Our work success-
fully manipulated the memorability of images in both in-
creasing and decreasing directions and discovered that
brain regions associated with the face and body exhib-
ited differential activity based on the memorability alter-
ations, with specific activity patterns emerging in early
visual areas. The amygdala responded to changes in
both directions, whereas the hippocampus was primar-
ily responsive when memorability decreased. Notably,
place-associated areas showed reverse responses, be-
ing less active when images with increased memorabil-
ity were presented. This investigation contributes to our
understanding of the cognitive processes involved in vi-
sual memory, demonstrating the potential of integrating
generative neural network models with neuroimaging to
study brain function, and paving the way for formulation
of experimentally testable hypotheses.
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Introduction
It is still not fully understood what features make an im-
age more memorable, and the neural mechanisms shaping
this behavioral phenomenon. Previous studies using human
fMRI have demonstrated that variations in response magni-
tude within the high-level visual cortex correlate well with the
memorability of faces and scene images (Bainbridge, Dilks, &
Oliva, 2017; Bainbridge & Rissman, 2018; Lahner, Mohsen-
zadeh, Mullin, & Oliva, 2024). In this work, we aimed to ex-
plore how the brain reacts differently to variations in the mem-
orability of images by using a diverse set of images beyond
faces and scenes. Inspired by the work of (Gu et al., 2022),
our research leverages artificial deep neural network (DNN)
models as brain encoders and generative adversarial network
(GAN) models for cognitive neuroscientific discovery, integrat-
ing these with human fMRI data to analyze responses in the
face, body, place, and early visual areas, as well as memory-
related regions such as the hippocampus and amygdala.

Materials and Methods
The Natural Scenes Dataset (NSD) contains high-resolution
fMRI responses from 8 subjects to images of everyday scenes
featuring common objects in their natural contexts (Allen et al.,
2022). We trained the encoding model for each subject, using
responses from 1,000 images that were shared across all sub-
jects as the validation set and responses from the remaining
images as the training set.

First, we manipulated the memorability of images in both
increasing and decreasing directions (Fig 1A). As the NSD

Figure 1: Schematic diagrams of the workflow. (A) Control-
ling memorability of real images with generative adversarial
networks inspired by (Younesi & Mohsenzadeh, 2022). (B)
Predicting brain responses of memorability-modified images
using the encoding model.

lacked memorability scores, we used MemNet for scoring. In-
spired by (Younesi & Mohsenzadeh, 2022), which employs lo-
gistic regression to differentiate high- and low-memorable im-
ages, we utilized a GAN inversion approach for conversion to
latent vectors. Specifically, StyleGAN-XL, pre-trained on Im-
ageNet, was used to invert the images to their latent spaces
(Sauer, Schwarz, & Geiger, 2022).

Peak signal-to-noise ratio (PSNR) and learned perceptual
image patch similarity (LPIPS) were used to screen overly
disrupted images and exclude those altered beyond recogni-
tion after memorability control. We also excluded images not
shown to all subjects, resulting in 152 images from the shared
1,000 in NSD used for the experiment. The feature-weighted
receptive field (fwRF) model with AlexNet as the feature ex-
tractor was used as the brain encoder (Deepnet-fwRF), as
described by (St-Yves & Naselaris, 2018). The workflow of
predicting brain responses is depicted in Fig 1B.

Results

Controlling Memorability of Images

To validate that the memorability of the images was effectively
manipulated, we fitted mixed linear regression models to re-
constructed images (Goetschalckx, Andonian, Oliva, & Isola,
2019). The fitted model confirmed that for every twenty-unit in-
crease, memorability increased by 0.012 for the reconstructed



Figure 3: Histograms and kernel density estimate (KDE) plots of predicted ROI responses for memorability-modified images. Or-
ange texts indicate paired t-test results between original and memorability-increased images and blue texts are for memorability-
decreased images. Test results of the reverse hypothesis for place area are shown on the right side of each plot with bold
text.

Figure 2: Changes in memorability as memorability coef-
ficient increases. (A) Samples of memorability-decreased,
reconstructed, and memorability-increased images, respec-
tively. (B) Memorability changes in generated images.

images (p < 0.001). Changes in memorability as the coeffi-
cient increases are shown in Fig 2.

Brain Activity in Response to Changes in
Memorability

To ensure that predicted activations for original and recon-
structed images were similar, we calculated correlations be-
tween recorded and predicted activations for both image types
across subjects. Subsequent two-sided paired t-tests of these
correlations showed that 5 of 8 subjects had similar activations
(p > 0.05), and we included these subjects (2, 3, 4, 7, and 8)
in the analysis.

We predicted activations for memorability-increased, -
decreased and original images across each region of inter-
est (ROI), and conducted two paired t-tests to hypothesize:
i) increased memorability leads to higher ROI activation com-

pared to original images, and ii) decreased memorability leads
to lower ROI activation. We checked 23 ROIs including early
visual areas (V1, V2, V3, and V4), higher visual areas (occipi-
tal face area (OFA), fusiform face area (FFA), medial temporal
lobe (mTL) face area, anterior temporal lobe (aTL) face area,
extrastriate body area (EBA), fusiform body area (FBA), mTL
body area, occipital place area (OPA), parahippocampal place
area (PPA), retrosplenial cortex (RSC)), and components of
medial temporal lobe (hippocampus and amygdala).

Predicted brain activity distributions for original images
and their memorability-modified counterparts are illustrated in
Fig 3. The results indicate statistically significant changes in
both directions for FFA1, FFA2, aTL faces, FBA1, FBA2, and
both amygdala (p < 0.05). Activity in V2v was statistically
significant only with increased memorability, while OFA, mTL
faces, EBA, mTL bodies, V3d, hV4, and left and right hip-
pocampus were statistically significant when memorability de-
creased.

Conclusion
We explored how brain responses vary when the memora-
bility of an image is either increased or decreased, exclud-
ing semantic influences. Notably, all face and body ROIs
responded differently based on memorability changes. The
V2 area activated more with increased memorability, while V3
and V4 were less active with decreased memorability. The
amygdala responded in both directions of memorability ad-
justment, whereas the hippocampus only activated with de-
creased memorability. Significantly, none of the place areas
showed any significant changes with our anticipated direction
but exhibited the reverse, showing less active responses when
images with increased memorability were given.
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