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Abstract
Humans can learn individual episodes and generalizable
rules and also successfully retain acquired knowledge
over time. In the cognitive science literature, (1) learn-
ing individual episodes and rules and (2) learning and
remembering are often both conceptualized as compet-
ing processes that necessitate separate, complementary
learning systems. Inspired by recent research in statis-
tical learning, we challenge these trade-offs, hypothesiz-
ing that they arise from capacity limitations rather than
from the inherent incompatibility of the underlying cog-
nitive processes. Using an associative learning task, we
show that one system with excess representational ca-
pacity can learn and remember both episodes and rules.
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mentary learning systems, continual learning

Introduction
In the study of learning, two trade-offs have historically been
observed in the behavior of computational models: (1) be-
tween the abilities to simultaneously learn episodes and gen-
eralizable rules and (2) between the abilities to learn and to
remember. For example, connectionist models exhibit the be-
haviors that (1) memorizing individual episodes leads to a re-
duced ability to learn the rules required to generalize to new
episodes (“overfitting”) and (2) learning in a new task leads
to catastrophic forgetting of what has been learned in pre-
vious tasks (McCloskey & Cohen, 1989). These observa-
tions motivated the creation of dual-system theories, such as
the complementary learning systems model (McClelland, Mc-
Naughton, & O’Reilly, 1995), which posit separate learning
systems for learning and remembering episodes and rules.

Recent research has shown that the trade-off between
learning episodes and rules is not inherent to learning in
computational systems. The computational models in which
these trade-offs were historically observed had limited capac-
ity : They could memorize only a small number of their obser-
vations. Computational systems with excess capacity, which
can recover far more and more complex relationships between
the features of observations, have the ability to both mem-
orize and generalize, i.e., to learn both episodes and rules
(Dubova & Sloman, 2023; Belkin, Hsu, Ma, & Mandal, 2019;
Nakkiran et al., 2019; Davies, Langosco, & Krueger, 2023). In
this study, we demonstrate that excess capacity systems can
also overcome the apparent trade-off between learning and
remembering, i.e., they can simultaneously successfully learn
new episodes and rules and remember previously-learned
episodes and rules.

Methods
Catastrophic forgetting. Human participants in the behav-
ioral test referenced by McClelland et al. (1995) were tasked
with memorizing batches of random word pairings in a blocked
regime (Barnes & Underwood, 1959). During the first block,
participants were presented with a list of words (list A) and

tasked with memorizing arbitrary associations between the
words on list A and the words on another list B (A−B pair-
ings). During the second block, they were presented with a
new word list C and tasked with memorizing arbitrary associ-
ations between the words on list A and on list C (A−C pair-
ings). Over the course of training on the A−C pairings, partic-
ipants were tested on the A−B pairings they learned during
the first block. Participants showed memory interference, but
were still able to retain most of the previously learned asso-
ciations. McCloskey and Cohen (1989) modeled behavior in
this task with a simple connectionist model. This model for-
got nearly all information about the A−B pairings after being
trained on the A−C pairings, a phenomenon they referred to
as catastrophic forgetting.

Task. McCloskey and Cohen (1989)’s procedure by chang-
ing the data to vary on a continuum from rules to episodes,
so that the dynamics of learning and forgetting of arbitrary as-
sociations between episodes and generalizable rules can be
studied together. This ratio of rule and episode is controlled by
a noise parameter, which at max created a rule-free episode,
and at zero created a simple rule.

Data. Two sample datasets of 10 5-dimensional samples,
Atrain,Atest are created by sampling from a Gaussian prob-
ability distribution. These datasets are then passed through
a transformation f . Two target datasets, B and C, are each
formed by taking a weighted sum between the transformed
data and another sample dataset from the same Gaussian
distribution. A third dataset D is created by omitting the added
noise to dataset C.

Atrain ∼ N (0,1)
Atest ∼ N (0,1)

B = (1−noise) · f (Atrain)+noise · εB
C = (1−noise) · f (Atest)+noise · εC

D = (1−noise) · f (Atest)

where 0 ≤ noise ≤ 1. We test this generalization using Atest −
D because this allows us to ignore the error caused by the
noise added to C.

Model. Following McCloskey and Cohen (1989), we used a
simple multi-layer perceptron architecture with two hidden lay-
ers of equal width. Our key manipulation was the capacity of
each model we tested. The capacity of a model is defined as
the minimum number of hidden nodes needed to fully mem-
orize a given dataset. The width of the models’ layers varied
proportionally with the sufficient capacity relative to each train-
ing dataset. We tested models with a capacity of .5, 1, 10 and
100 times the capacity needed to fully memorize the datasets.

Training. During Phase 1, the models were trained to asso-
ciate Atrain with B, which involves learning both the rule f and
the episodes εB. During Phase 1, we also tested the models’
abilities to generalize Atest to C. During Phase 2, the models



Figure 1: Temporal plots for learning and remembering (the
noise level is fixed at 25%). Left: The episode (top) or
rule (bottom) for Atrain − B is learned. Right: The episode
Atrain −C is learned (green lines) while the episode (top) or
rule (bottom) for Atrain −B is being forgotten.

were trained to associate Atrain with C. During Phase 2, we
also tested the models’ abilities to recall the Atrain−B pairings
and to predict the Atest −D pairings, which capture the mod-
els’ abilities to remember episodes and rules, respectively.

The models were optimized with Stochastic Gradient De-
scent using a mean squared error loss function (learning rate
= 0.01). All models were trained until convergence, defined
as a rate of decrease in loss going below 1×10−5 per 5,000
epochs. We ran all simulations 100 times.

Results

Consistent with prior literature (e.g. (Belkin et al., 2019; Nakki-
ran et al., 2019)), the systems with excess capacity overcame
the rules vs. episodes trade-off showing superior ability to ac-
quire both episodes (t = 19.0, p < 0.001,d = 2.69) and rules
(t = 28.6p < 0.001,d = 4.04) than models of constrained and
sufficient capacity in all cases (Fig. 2).

Consistent with prior work on catastrophic forget-
ting, the constrained and sufficient capacity learning
systems exhibited very limited ability to retain prior
knowledge when having to learn a new set of interfering
associations. The excess capacity systems, however,
showed an enhanced ability to retain their knowledge of
both episodes (t = 20.3, p < 0.001,d = 2.87) and rules
(t = 14.1, p < 0.001,d = 1.99) (Fig. 1 and 2).

Figure 2: Final averaged mean results after training. Left of
the dashed line: constrained capacity; Dashed line: sufficient
capacity, Right of the dashed line: excess capacity. Error bars
show standard errors.

Conclusion

Our results demonstrate the ability of one computational
learning system to both learn and remember episodes and
rules. By challenging the traditional view of learning and re-
membering episodes and rules as inherently opposing pro-
cesses, this work opens new avenues for understanding the
flexibility and nuance of cognitive function by exploring the
properties of learning in different capacity regimes. Our find-
ings also have important implications for the study of contin-
ual learning, transfer learning, and the development of more
advanced cognitive architectures (Mannering & Jones, 2021;
van de Ven, Soures, & Kudithipudi, 2024; Achille, Rovere,
& Soatto, 2019; Sherman, Turk-Browne, & Goldfarb, 2023;
Schapiro, Turk-Browne, Botvinick, & Norman, 2017; Sherry
& Schacter, 1987; Liu et al., 2022).
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