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Abstract: 

Despite considerable effort, predicting human 
similarity judgments and aspects of memory that rely 
on such judgments remains challenging.  In this work, 
we collected a large set of human similarity judgments 
and compared the performance of semantic and visual 
deep neural networks in predicting them. We then 
examine the effectiveness of the computational 
similarity metrics in predicting false alarms in a 
recognition memory task. We show that general visual 
features best predict perceptual similarity while 
combined visual and semantic information better 
explain memory performance.  
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Introduction 
Visual memory is built upon a trade-off between two 
seemingly incompatible aims. First, a familiar item should 
be recognized in different contexts, requiring 
generalization and invariance. Second, different items 
should be distinguished even if they are very similar, 
requiring fine discrimination. Similarity plays a 
fundamental role in both processes: the probability of 
generalization increases with the similarity between two 
items (Shepard, 1987), and the ability to discriminate 
memories relies on the dissimilarity between brain 
representations (Leal & Yassa, 2018). How do people 
perceive similarity, represent it in the brain, and use these 
representations to guide behavior? 
 Answering these questions requires establishing a 
similarity metric for study items (e.g., visual stimuli in 
memory tasks). Computer vision research has shown that 
convolutional neural networks (CNN) predict human 
similarity judgments reasonably well (Jozwik et al., 2017; 
Zhang et al., 2018), but these models fail in more complex 
tasks with semantically rich stimuli (Rosenfeld et al., 
2018). Notably, even the most sophisticated CNN models 
that correlate with human judgments are often 
outperformed by simple categorical models (Jozwik et al., 
2017; Shoham et al., 2024). Here we present a 
quantitative similarity metric for visual stimuli and 
explore its utility in predicting performance of human 
subjects in a recognition memory task.  
 

Methods 
 

Similarity-judgments task Independent pools of 
participants (n=45 and n=54) performed 2 variants of a 
multi-arrangement task (Kriegeskorte & Mur, 2012). The 
task was to arrange images within an arena based on visual 
similarity (Fig. 1A). Then, a representational dissimilarity 
matrix (RDM) was computed for each participant. 
Image caption task Image captions for SGPT text 
embedding were collected from Amazon Mechanical Turk 
participants who were asked to describe the images. Each 

image had ~20 captions from different annotators and we 
chose the caption whose embedding was the medoid. 
Recognition memory task The task was previously 
described (Rutishauser et al., 2010). Briefly, subjects 
(n=41) first viewed 100 novel images. Then, subjects were 
presented with 50 novel and 50 old images and for each, 
were asked to indicate whether they had seen the image 
before or not (Fig. 2A). Images belonged to five different 
categories with the same number of images in each. 
Models We use several pre-trained deep neural networks 
(DNN). DINOv2 is a self-supervised vision transformer 
(ViT) model that extracts general purpose visual features 
without training labels. CLIP is a natural language-
supervised ViT-based model, trained to match text and 
images. AlexNet, VGG16, and ResNet50 are deep CNNs 
trained to categorize images. SGPT is a GPT transformer-
based model trained on text to perform semantic search. 
The "pixel-wise" model is correlation distance between 
pixels for a pair of images. The "categories" model is an 
RDM with binary values (0 and 1). 

 
Results 

 
DINOv2 model captures human similarity judgments 
within and across semantic categories.  For a systematic 
evaluation of DNN model performances in explaining 
human perceptual similarity, we collected similarity 
judgments for (1) a dataset of 25 images (five images each 
of five categories) (Fig.1B, left) and (2) a dataset of 30 
images in the “space” category (Fig.1B, right) to remove 
the effects of categorical structure. The stimuli dataset 
were processed with DNN models to obtain embeddings 
(see methods; for SGPT embeddings, collected text 

Figure 1 Task and dissimilarity matrices. (A) Example 
of trial in multi-arrangement task. (B) RDMs computed 
from the similarity judgments collected with the task in A.  

 

Table 1 Model performance in predicting human RDMs  
 



 

captions were used instead of images; a category model 
was created only for the first dataset). We compared each 
model RDM with each human subject's similarity RDM 
with randomized tiebreaking Spearman’s ra (Schütt et al., 
2023). Table 1 depicts average correlations for each model 
in both datasets. Next, we performed statistical inference 
on these evaluations and found that all models except for 
the pixel-wise model in the first dataset performed 
significantly better than 0 (one-sided t-test p-value<0.001, 
Bonferroni-corrected α=0.00125/ 0.001428 for first/second 
dataset). In the first dataset, SGPT, CLIP, and DINOv2 
significantly outperformed the category model with 
DINOv2 being significantly better than all other models 
(FDR-corrected pairwise t-test for 28 model-pairs 
comparisons). As DINOv2 is trained in a self-supervised 
manner, without labels, this suggests that general visual 
features best explain similarity ratings. In the absence of 
category, DINOv2 still significantly outperformed all other 
models (same inference). Note that in both datasets, only 
DINOv2 performance did not significantly differ from 
lower bound noise ceiling (one-sided t-test p-
values=0.00135/0.1970 in first/second dataset).  
In summary, we found that deep features of the ViT-based 
model DINOv2, learned from images alone, predict human 
perceptual similarity judgments better than classic CNN-
based features or features of ViT models trained with text-
guided supervision.   
Deep feature-based image similarity contributes to 
memory-based false alarm rate. As a next step, we 
explored if the derived similarity metric could explain 
memory behavior. We used an independent pool of 
participants that performed a recognition memory task 
(Fig. 2A). On average, participants correctly recognized 
68.73% of old images and incorrectly recognized 22.44% 
of new images as “old” (“false alarm rate”). We 
hypothesized that “false alarms” are at least partially a 
result of the new images being similar to previously studied 
images. To test this, for each new image 𝑖 shown during 
retrieval, 	we computed the probability of incorrectly 
recognizing this image as “old” (𝑝(′𝐹𝐴!)"). We then 
regressed these probabilities against the minimum cosine 
distance (min 𝑑#$%) between deep feature vectors for an 
image 𝑖 (𝑎") and all images presented during learning (𝐵). 
In addition to similarity, false alarms can also result from 

an image-intrinsic sense of familiarity as predicted by 
strength theory (Norman & Wickelgren, 1969). To account 
for this, we used ResMem, the CNN trained to predict 
image memorability (Needell & Bainbridge, 2022). We 
also regressed 𝑝(′𝐹𝐴!) against the category variable to 
control for the known strong influence of semantic 
category on memory (Kramer et al., 2023). The regression 
results for all models are shown in Table 2. We found that 
by itself, only the CLIP-derived similarity (expressed as 
min 𝑑#$%)  explains more variance in false alarm rate than 
simple category membership. Interestingly, image 
memorability (ResMem predictions) did not explain 
significant amount of the variance in false alarms. These 
results are consistent with previously reported contribution 
of semantic information to memory. But can we explain 
more variance in false alarms by adding visual features?  
To answer this, we investigated if best-performing models 
could contribute to the false alarm rate variance in addition 
to what is explained by category membership alone. We 
fitted the following linear model:  

𝑝(′𝐹𝐴!)" ∼ 1 +	𝛽&∙category + 𝛽'∙ min(𝑑#$%(𝑎" , 𝐵)),	 
where “category” is a categorical variable with 5 levels. 
DINOv2-based cosine similarity together with category 
membership explained 48,6% of the variance in false alarm 
rate (Fig. 2B), significantly better than category alone 
(likelihood-ratio test p-value=0.000004, Bonferroni 
corrected α= 0.0025). Note that this model also had the 
lowest Bayes information criterion ( BIC, red line in Figure 
2B) suggesting that it is preferred over just a category 
model or a more complex model that also includesd CLIP.  
To summarize, we confirmed that category strongly 
influences memory performance but adding a perceptual 
feature-based metric (expressed as DNN-based cosine 
similarity) can increase explained variance up to almost 
50%.  

Discussion 
In this work we established similarity metric for visual 
stimuli and demonstrated that this metric can meaningfully 
capture memory performance expressed as false alarm rate. 
We envision the next steps in bridging behavior data with 
brain similarity representations via the tools established 
here to shed light on neural underpinnings of visual 
perception and memory.  

Figure 2 Memory task and performance. (A) Scheme of 
retrieval block of recognition memory task. (B) Comparison 
between models in predicting false alarms. 

Table 2  Linear regression for false alarm rate2 
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