
Impact of Stimulus Statistics on Activity Patterns in a Model of Mouse
Visual Cortex

Parsa Torabian (p2torabi@uwaterloo.ca)
Department of Systems Design Engineering, University of Waterloo

200 University Avenue West, Waterloo, ON Canada

Yinghan Chen (y977chen@uwaterloo.ca)
Department of Systems Design Engineering, University of Waterloo

200 University Avenue West, Waterloo, ON Canada

Shahab Bakhtiari (shahab.bakhtiari@umontreal.ca)
Department of Psychology, University of Montreal

Montreal, QC, Canada

Bryan Tripp (bptripp@uwaterloo.ca)
Department of Systems Design Engineering, University of Waterloo

200 University Avenue West, Waterloo, ON Canada



Abstract
A number of studies have found that deep networks
can be significantly predictive of brain activity in
mice, monkeys, and humans. In this work, we used
an architecture that closely resembles the mouse
visual cortex (MouseNet) and tested the impact of
training data statistics on representational similar-
ity with data recorded from the mouse visual sys-
tem. We used the Unity engine to create eight
video datasets with stimulus properties that were
either realistic or artificial in three dimensions: en-
vironment, motion statistics, and optics of the mod-
elled eye. We used each of these datasets to train
the MouseNet model using a self-supervised objec-
tive. We found significant, area-dependent varia-
tions in similarity scores across different training
data conditions. Notably, models trained with re-
alistic environments consistently yielded the high-
est increases in similarity scores, particularly in
higher areas of MouseNet. In contrast, the realistic
motion conditions caused area-selective improve-
ments or degradations in similarity scores. Further-
more, across conditions and network instances,
we found that self-supervised loss and top-1 accu-
racy were poorly correlated with similarity to corti-
cal representations. These results are an important
step in developing models that more fully account
for stimulus-driven mouse brain activity.
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Introduction
Deep artificial neural network (ANN) responses are of-
ten found to predict responses of brain networks to
the same stimuli (Yamins et al., 2014; Storrs, Kiet-
zmann, Walther, Mehrer, & Kriegeskorte, 2021). In
general, ANN visual representations depend on statis-
tics of training data, but it is unclear how these statis-
tics affect similarity with the brain. We hypothesized
that training data with properties that were more real-
istic and/or ethologically relevant to mice would result in
more mouse brain-like responses. To test this idea, we
used a video-game engine to create datasets that dif-
fered in several dimensions of realism and used them
to train MouseNet (Shi, Tripp, Shea-Brown, Mihalas, &
Buice, 2022), a convolutional network that is modelled
on the mouse visual cortex. Consistent with our hypoth-
esis, we found that datasets based on an ethologically
relevant meadow environment resulted in more brain-
like representations than datasets based on an artificial
spaceship environment. Other dimensions of realism
had inconsistent effects.

Realistic Natural Environment
We used two environments to generate training stim-
uli: A realistic and ethologically relevant ”meadow” envi-

ronment and an artificial ”spaceship” environment (Fig-
ure 1). The meadow environment was more visually
complex and contained natural features such as sway-
ing grass, rocks, dirt paths, trees, apples, cliffs, and
clouds. The spaceship environment had grey metallic
walls, roofs, and ceilings punctuated by bright neon light
strips across the walls and floor.

Figure 1: Screenshots of the Non-Realistic vs Realistic
Environment environment from within the Unity Video
Game Engine

Realistic Motion Statistics
We created stimulus videos by moving binocular cam-
eras through these environments using two distinct
kinds of motion. First, we developed a VARMA model
of mouse-head motion from motion-tracking data (cour-
tesy of Adrien Peyrache). Second, we used predomi-
nantly straight-line motion punctuated by sharp turns.

Realistic Optics of the Modelled Eye
To toggle realism in the vision of the agent, we used two
sets of optical settings for the cameras that captured
video stimuli. Non-realistic vision employed Unity’s de-
fault pinhole camera. Realistic vision was based on
mouse-eye focal depth and field of view, and averag-
ing the red and green color channels (Prusky, Alam, &
Douglas, 2006; Geng et al., 2011; Ali & Klyne, 1985).

Naming Convention
The datasets are coded with E, V, M to denote Realis-
tic Environment, Realistic Vision, and Realistic Motion.
A slash (/) is used to represent the non-realistic set-
ting. Thus, dataset EVM is the dataset recorded using
naturalistic motion within the meadow environment and



mouse-approximated optical properties. Similarly, ///
is the dataset recorded with straight line motion in the
spaceship environment using the default Unity camera.

Methods
We used Dense Predictive Coding (DPC) (Han, Xie,
& Zisserman, 2019), a variant of Contrastive Predic-
tive Coding (CPC) (van den Oord, Li, & Vinyals, 2018),
in which negative samples are drawn from both spa-
tial and temporal indices of training video dataset. For
each dataset condition, we trained five MouseNet mod-
els each with a different random seeds. We also ran-
domly initialized 30 MouseNet models to compare as
an ”Untrained” or baseline condition. To compare the
MouseNet representations with mouse brain activation,
we used the Allen Brain Observatory open 2-photon
calcium imaging dataset (de Vries et al., 2019) and
the recordings corresponding to 30-seconds of natural
movie presentation. Those same natural movies were
presented to the MouseNet models and we used Rep-
resentational Similarity Analysis (RSA) (Kriegeskorte,
Mur, & Bandettini, 2008) as our similarity score. All
changes in similarity scores are reported as the coef-
ficients of a linear model compared to randomly initial-
ized untrained models and only reported if significant
(p-value < 0.05).

Results
Realistic Environment Boosts Similarity
In the average across all Mouse-CNN area pairs (cells
of the RSA matrix) and random seeds, the only models
which outperformed the randomly initialized MouseNet
models were those with the realistic naturalistic environ-
ment (Figure 2). The E// dataset yielded the highest
average increase in similarity score by 4.4%, while train-
ing with the EV/ and EVM datasets boosted similarity
by 3.9% and 3.4% respectively.

Area Specific Effects
While the datasets with realistic environment conditions
resulted in higher similarities overall, they reduced simi-
larity with mouse areas VISp and VISam. Furthermore,
training with dataset E/M reduced VISp similarity by -
7.7% consistently across seeds.

The only dataset that significantly increased similarity
to mouse area VISam was condition //M . This is no-
table given that this area is particularly associated with
visual motion processing (Bakhtiari, Mineault, Lillicrap,
Pack, & Richards, 2021; Sit & Goard, 2020). The //M
dataset increased similarity to VISam by 1.2% whereas
other datasets yielded decreases of -1.3% to -4.9%.

Contrastive Predictive Loss vs Brain Similarity
Contrastive predictive training is effective at training pre-
dictive models of brain activation (Nayebi et al., 2023),

Figure 2: Similarity scores throughout training show-
ing which dataset conditions perform better than a ran-
domly initialized model in the aggregate.

but we found that contrastive loss and accuracy were
not closely related to similarity between different input
conditions. For example, /// and /V/ led to the low-
est loss and highest training accuracy, but these models
performed poorly in terms of average similarity (Figure
3). Conversely, E// and EV/ show the highest similar-
ity scores despite larger contrastive losses, relative to
the other dataset conditions.

Higher loss may arise from stimuli that are more com-
plex or less predictable, which may force the model to
learn more sophisticated representations. These repre-
sentations may in turn be more biologically realistic.

Figure 3: Representational similarity vs training loss at
each epoch. ’+’ Markers represent the average similar-
ity score and loss throughout training.
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