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Abstract 
Interacting with the physical world requires 
predicting what will happen next, from catching a 
ball to stacking dishes to changing lanes in traffic. 
This ability in turn often hinges on representing 
contact relationships among objects, as the fate of 
two objects is intertwined when they are in contact. 
We found recently that the brain's hypothesized 
"physics network" both represents whether two 
objects are in contact and predicts future contact 
in simple scenarios. What computations underlie 
this ability? Might fast pattern recognition 
mechanisms like those found in convolutional 
neural networks (CNNs) suffice?  To find out, we 
presented our same stimuli to CNNs pre-trained on 
object recognition (VGG-16) and action recognition 
(3D-ResNeXT-101). The scenario-invariant current 
and predicted object contact information we found 
in the brain could not be linearly extracted from 
these networks. Future work will test whether 
training on our scenarios and tasks may enable 
these networks to represent this information. 
Alternatively, the brain's ability to extract current 
and future contact information may depend on 
different computational mechanisms better 
captured by a structured generative model that 
runs approximate probabilistic simulations based 
on knowledge of physics and of the physical 
properties of the current scene, akin to those in 
video game engines. 
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Introduction 
Planning actions entails predicting future world states, 
which in turn requires knowledge of how the world 
works (e.g., gravity) and information about the current 
scene such as object contact relationships (e.g., 
containment) which constrain future world states. If a 
container moves, so does its containee, but the same 
is not true for an object that only occludes another 
object without touching it. Underscoring their 

importance for physical scene understanding, object 
contact relationships emerge early in development 
(Hespos & Baillergeon, 2001; Baillergeon, Needham & 
DeVos, 1992; Spelke, Philips & Woodward, 1996), are 
privileged in language (e.g., in vs. behind; Hafri, Green 
& Firestone, 2023), are extracted quickly and 
automatically (Hafri & Firestone, 2021; Hafri et al. 2024), 
and are represented in brain regions implicated in 
physical reasoning (Pramod et al., in prep). 

 
Figure 1: Example stimuli for (A) Contact Detection and 
(B) Contact Prediction. Arrows indicate motion 
trajectories of the respective objects. 

 
What kind of computations underlie our abilities to 

perceive object contact and to predict what will happen 
next in a physical scene? Prior work has shown that 
CNNs can learn powerful representations that support 
not only object recognition, detection, segmentation, 
and retrieval but also accurate prediction of scene 
stability (Lerer, Gross & Fergus, 2016; Conwell, Doshi 
& Alvarez, 2019) and infant-like physical prediction 
behaviors (Piloto et. al., 2022). However, these studies 
have tested CNNs only within narrow domains (block 
towers) or by providing ground truth object masks and 
motion trajectories, so it is unclear if CNNs are useful 
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for physical reasoning in complex natural scenarios 
(see Pramod et al., 2022). On the other hand, human 
behavior in various physical reasoning tasks is well 
modeled by approximate probabilistic simulation in 
game-style physics engines (Battaglia, Hamrick & 
Tenenbaum, 2013; Zhang et al., 2016).  

Here we test whether the representations learned 
when CNNs are trained on object classification 
(ImageNet) and action recognition (Kinetics) contain 
the scenario-invariant information about current and 
predicted object contact that we found recently in the 
brain (Pramod et al., in prep). 

 
Methods 

Stimuli: We used two sets of 1.5-s video clip stimuli, 
developed for our recent brain imaging study, which 
varied the presence and predictability of contact, 
orthogonally from scenario, objects, and motion (Fig 1).  
Contact Detection: This set had 4 object relationship 
types (Contain, Support, Attach and Occlude), each 
embedded in 3 different scenarios (Figure 1A). In the 
Natural-Create scenario, a hand placed an object 
relative to a base object to create the relationship. The 
Natural-Consequence scenario showed a hand moving 
the base object back and forth with the second object 
already in position to reveal the contingency between 
the two objects. The Rendered scenario revealed the 
contingency through a collision between the base 
object and a ball (with no hand visible). The Natural 
scenarios were filmed in-house with human actors, and 
the Rendered scenario was created using Blender. We 
created a total of 768 video clips across all conditions.  
Contact Prediction: 96 Blender-created video clips 
showed an agent and patient object varying 
orthogonally in a 2x2 design with event type (Contact 
or Non-contact) and condition (Perceived or Predicted) 
as factors (Figure 1B). The Perceived condition showed 
actual collision and non-collision events whereas the 
Predicted condition only showed partial trajectory of 
the agent object from which an imminent collision or a 
non-collision event could be predicted. These four 
conditions were each shown in three other orthogonally 
crossed dimensions: 2 scenarios (Roll or Throw), 6 
background scenes (3 indoor and 3 outdoor), and two 
motion trajectories of the agent object (left or right).  
 
Models: We extracted feature representations from the 
penultimate layer of the two pre-trained CNNs: VGG-
16 trained on ImageNet object recognition, and 3D-
ResNeXT-101 trained on Kinetics videos for action 
recognition. For VGG-16 we either averaged features 
across all frames of the video or used features for a 
single selected frame in each video that most clearly 
revealed the object-object relationship. 

Contact Detection: We trained a linear SVM classifier 
on CNN features for contact vs. non-contact decoding 
on one scenario (e.g., Natural-Create) and tested on 
the remaining two scenarios. We randomly sampled 
stimuli uniformly from the 3 contact relations to match 
the sample size of the non-contact (i.e., occlude) 
relationship. We also tested contain vs. occlude 
decoding, as the two most visually similar conditions.  
Contact Prediction: We trained a linear SVM classifier 
on CNN features for contact vs non-contact decoding 
on one of the scenarios (say, Roll) in the Perceived 
condition and tested it on the held-out scenario (say, 
Throw) in the Perceived condition (to test contact 
detection), and the Roll and Throw scenarios in the 
Predicted condition (to test contact prediction). 

Table 1. Decoding accuracy for contact detection and 
prediction in both CNNs across scenarios. 

 Contact Detection 
(Natural-Rendered) 

Contact Prediction 

 Contact 
Vs. 

Noncontact 

Contain 
Vs. 

Occlude 

Perceived 
Vs. 

Perceived 

Perceived 
Vs. 

Predicted 

VGG-16 55.9 
(54.2) 

54.5 
(54.5) 

50 51.04 

3D-Res 
NeXT101 

59.4 48.2 45.8 53.1 

 
Results 

The CNN decoding results are summarized in Table 1. 
In both pre-trained VGG-16 and 3D-ResNeXT-101, 
contact detection accuracy was close to chance when 
trained on either of the Natural scenarios and tested on 
the Rendered scenario (and vice versa). We observed 
similar results for the more visually matched Contain 
vs. Occlude decoding. Since ImageNet pre-trained 
VGG-16 cannot take video inputs, we averaged 
features across all frames to obtain a single feature 
vector for each stimulus. However, because this 
procedure could blur critical features, we repeated the 
train and test procedure using feature representations 
for a single frame in each video clearly showing the 
underlying object relationship. Here too, we found near 
chance contact decoding accuracy (Table 1, top row in 
parentheses). 

Contact decoding was at chance for both CNNs, 
both when trained and tested on Perceived conditions, 
and when trained on Perceived and tested on 
Predicted, indicating that they lack both generalizable 
representations of current contact, and the ability to 
predict future object contact. 



Conclusions 
Unlike human minds and brains, pretrained CNNs 

apparently do not extract scenario-invariant 
information about current or predicted object contact. 
Future work will test whether CNNs trained on this task, 
or generative models, better fit human data. 
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